计算机与应用化学
計算機與應用化學
계산궤여응용화학
COMPUTERS AND APPLIED CHEMISTRY
2014年
9期
1114-1118
,共5页
祁博%邹金慧%范玉刚%黄国勇%王晓东%邵宗凯
祁博%鄒金慧%範玉剛%黃國勇%王曉東%邵宗凱
기박%추금혜%범옥강%황국용%왕효동%소종개
化工厂%电压暂降源%EMD模态能量%SVM%识别
化工廠%電壓暫降源%EMD模態能量%SVM%識彆
화공엄%전압잠강원%EMD모태능량%SVM%식별
chemical plant%voltage sags source%EMD mode energy%SVM,identification
针对化工厂配电网中的短路故障和变压器投切引起的电压暂降信号的非平稳性以及电动机启动引起的电压暂降信号的特殊性,提出1种基于EMD模态能量和SVM的电压暂降源识别方法。首先对电压暂降信号进行经验模态分解(EMD),得到1个固有模态函数集合(IMFs),然后计算IMF的各阶能量作为特征向量,用支持向量机(SVM)对样本进行训练与识别,通过仿真验证表明,该方法简单易行,具有较高的识别精度和实用性。
針對化工廠配電網中的短路故障和變壓器投切引起的電壓暫降信號的非平穩性以及電動機啟動引起的電壓暫降信號的特殊性,提齣1種基于EMD模態能量和SVM的電壓暫降源識彆方法。首先對電壓暫降信號進行經驗模態分解(EMD),得到1箇固有模態函數集閤(IMFs),然後計算IMF的各階能量作為特徵嚮量,用支持嚮量機(SVM)對樣本進行訓練與識彆,通過倣真驗證錶明,該方法簡單易行,具有較高的識彆精度和實用性。
침대화공엄배전망중적단로고장화변압기투절인기적전압잠강신호적비평은성이급전동궤계동인기적전압잠강신호적특수성,제출1충기우EMD모태능량화SVM적전압잠강원식별방법。수선대전압잠강신호진행경험모태분해(EMD),득도1개고유모태함수집합(IMFs),연후계산IMF적각계능량작위특정향량,용지지향량궤(SVM)대양본진행훈련여식별,통과방진험증표명,해방법간단역행,구유교고적식별정도화실용성。
According to the non-stationary signal of voltage sags due to chemical plant power distribution network short-circuit fault and transformer energizing, and the special features of the signal of voltage sags due to motor starting. A method based on EMD mode energy and support vector machine to solve this problem is proposed. Firstly, five types of signals of voltage sags generated by short-circuit faults, motor starting and transformer energizing are decomposed by EMD, and get a IMFs, then each IMF’s energy is to be calculated as a feature vector. The samples are trained and identified by SVM. The final result of this experimental simulation proves that the method is simple and reliable, of high recognition accuracy and practicability.