计算机与应用化学
計算機與應用化學
계산궤여응용화학
COMPUTERS AND APPLIED CHEMISTRY
2014年
9期
1075-1079
,共5页
肖应旺%刘冬杰%杨军%张承忠%姚美银
肖應旺%劉鼕傑%楊軍%張承忠%姚美銀
초응왕%류동걸%양군%장승충%요미은
FDA-KDE%间歇过程%过程监测%故障诊断
FDA-KDE%間歇過程%過程鑑測%故障診斷
FDA-KDE%간헐과정%과정감측%고장진단
fisher discriminant analysis and kernel density estimation%batch process%process monitoring%fault diagnosis
针对基于传统的多向主元分析(Multiway Principal Component Analysis, MPCA)方法用于间歇过程在线监控时需要对新批次未反应完的数据进行预估,从而易导致误诊断,且统计量控制限的确定是以主元得分呈正态分布为假设前提的缺陷,结合Fisher判别分析(Fisher Discriminant Analysis, FDA)在数据分类及非参数统计方法核密度估计(Kernel Density Estimation, KDE)在计算概率密度函数方面的优势,提出了一种 FDA-KDE 的间歇过程监控方法。该方法首先利用 FDA 求取正常工况数据和故障数据的Fisher特征向量和判别向量,获得Fisher特征向量的相似度;然后在提出偏平均集成平方误差(Biased Mean Integrated Squared Error, BMISE)交叉验证法确定KDE的带宽从而获得相似度统计量控制限的基础上,利用已获得的数据测量值对过程进行监控,避免了基于MPCA方法对未来测量值的预估;最后采用基于Fisher判别向量权重的贡献图方法来进行故障诊断。通过对青霉素发酵间歇过程应用表明,所提出的方法比传统的MPCA方法能更及时地监测出过程异常情况,更准确地判断异常发生的原因。
針對基于傳統的多嚮主元分析(Multiway Principal Component Analysis, MPCA)方法用于間歇過程在線鑑控時需要對新批次未反應完的數據進行預估,從而易導緻誤診斷,且統計量控製限的確定是以主元得分呈正態分佈為假設前提的缺陷,結閤Fisher判彆分析(Fisher Discriminant Analysis, FDA)在數據分類及非參數統計方法覈密度估計(Kernel Density Estimation, KDE)在計算概率密度函數方麵的優勢,提齣瞭一種 FDA-KDE 的間歇過程鑑控方法。該方法首先利用 FDA 求取正常工況數據和故障數據的Fisher特徵嚮量和判彆嚮量,穫得Fisher特徵嚮量的相似度;然後在提齣偏平均集成平方誤差(Biased Mean Integrated Squared Error, BMISE)交扠驗證法確定KDE的帶寬從而穫得相似度統計量控製限的基礎上,利用已穫得的數據測量值對過程進行鑑控,避免瞭基于MPCA方法對未來測量值的預估;最後採用基于Fisher判彆嚮量權重的貢獻圖方法來進行故障診斷。通過對青黴素髮酵間歇過程應用錶明,所提齣的方法比傳統的MPCA方法能更及時地鑑測齣過程異常情況,更準確地判斷異常髮生的原因。
침대기우전통적다향주원분석(Multiway Principal Component Analysis, MPCA)방법용우간헐과정재선감공시수요대신비차미반응완적수거진행예고,종이역도치오진단,차통계량공제한적학정시이주원득분정정태분포위가설전제적결함,결합Fisher판별분석(Fisher Discriminant Analysis, FDA)재수거분류급비삼수통계방법핵밀도고계(Kernel Density Estimation, KDE)재계산개솔밀도함수방면적우세,제출료일충 FDA-KDE 적간헐과정감공방법。해방법수선이용 FDA 구취정상공황수거화고장수거적Fisher특정향량화판별향량,획득Fisher특정향량적상사도;연후재제출편평균집성평방오차(Biased Mean Integrated Squared Error, BMISE)교차험증법학정KDE적대관종이획득상사도통계량공제한적기출상,이용이획득적수거측량치대과정진행감공,피면료기우MPCA방법대미래측량치적예고;최후채용기우Fisher판별향량권중적공헌도방법래진행고장진단。통과대청매소발효간헐과정응용표명,소제출적방법비전통적MPCA방법능경급시지감측출과정이상정황,경준학지판단이상발생적원인。
When multiway principal component analysis (MPCA) is used for on-line batch monitoring, the future behavior of each new batch must be inferred up to the end of the batch operation at each time and false alarms are produced easily, and in view of limitations of confirmation of statistical control limits which assumes that principal component scores are subjected to multivariate normal distribution, combining fisher discriminant analysis (FDA) which has the advantage in data classification and nonparametric statistics method of kernel density estimation (KDE) which has the advantage in computing probability density function, A FDA-KDE method for batch process on-line monitoring is proposed. Firstly, in order to get similarity degree about fisher eigenvector, FDA is used to obtain fisher eigenvector and discriminant vector of normal working conditions data and fault data; Secondly, on the basis of using biased mean integrated squared error (BMISE) cross validation method proposed to define KDE bandwidth, therefore, getting similarity degree statistical control limits, the proposed approach uses present data and overcomes pre-estimating the unknown part of process variable trajectory in MPCA. Finally, weight contribution plot about the fisher discriminant vector is used to perform fault diagnosis. Application results on a penicillin batch fermentation process demonstrate that, in comparison to the MPCA method, the proposed method is more accurate and efficient to detect and diagnose the malfunctions.