计算机工程
計算機工程
계산궤공정
COMPUTER ENGINEERING
2014年
10期
161-167
,共7页
李东明%王典洪%严军%王永涛%宋麦玲%余蓓蓓
李東明%王典洪%嚴軍%王永濤%宋麥玲%餘蓓蓓
리동명%왕전홍%엄군%왕영도%송맥령%여배배
脑机接口%运动想象%极大重叠小波变换%能量曲线%模式分类%电机转向控制
腦機接口%運動想象%極大重疊小波變換%能量麯線%模式分類%電機轉嚮控製
뇌궤접구%운동상상%겁대중첩소파변환%능량곡선%모식분류%전궤전향공제
Brain Computer Interface( BCI)%movement imagery%Maximum Overlap Wavelet Transform( MODWT)%energy curve%pattern classification%motor steering control
对运动想象脑电信号进行分类识别,是脑机接口研究中的重要问题。为此,提出一种基于极大重叠小波变换和AR模型的脑电信号分类方法。将脑电信号波形进行极大重叠小波分解,抽取变换系数的统计特征,利用Burg算法提取其3层光滑的8阶AR模型系数以及3层光滑部分的能量曲线特征,将这3类特征进行组合后,使用神经网络、支持向量机及线性判别进行分类和比较。与BCI2003竞赛数据分类精度结果相比,该方法的识别率更高。将模型移植入自行研制的嵌入式脑电信号控制电机转向系统中,该模式识别方法的平均准确度达到了91.3%,可用于嵌入式脑机接口的系统设计。
對運動想象腦電信號進行分類識彆,是腦機接口研究中的重要問題。為此,提齣一種基于極大重疊小波變換和AR模型的腦電信號分類方法。將腦電信號波形進行極大重疊小波分解,抽取變換繫數的統計特徵,利用Burg算法提取其3層光滑的8階AR模型繫數以及3層光滑部分的能量麯線特徵,將這3類特徵進行組閤後,使用神經網絡、支持嚮量機及線性判彆進行分類和比較。與BCI2003競賽數據分類精度結果相比,該方法的識彆率更高。將模型移植入自行研製的嵌入式腦電信號控製電機轉嚮繫統中,該模式識彆方法的平均準確度達到瞭91.3%,可用于嵌入式腦機接口的繫統設計。
대운동상상뇌전신호진행분류식별,시뇌궤접구연구중적중요문제。위차,제출일충기우겁대중첩소파변환화AR모형적뇌전신호분류방법。장뇌전신호파형진행겁대중첩소파분해,추취변환계수적통계특정,이용Burg산법제취기3층광활적8계AR모형계수이급3층광활부분적능량곡선특정,장저3류특정진행조합후,사용신경망락、지지향량궤급선성판별진행분류화비교。여BCI2003경새수거분류정도결과상비,해방법적식별솔경고。장모형이식입자행연제적감입식뇌전신호공제전궤전향계통중,해모식식별방법적평균준학도체도료91.3%,가용우감입식뇌궤접구적계통설계。
To classify and recognize the movement imagery electroencephalogram, is an important problem in Brain Computer Interface ( BCI ) research. This paper presents a novel method of extracting Electroencephalogram ( EEG ) features based on Maximum Overlap Wavelet Transform( MODWT) and Autoregressive( AR) model. The EEG signal is decomposed to three levels by MODWT and statistics of wavelet coefficients are computed. Meanwhile, in the EEG signal’ s approximation part, the eighth-order AR coefficients are estimated by Burg ’ s algorithm, and energe feature vector is also extracted. The combination features are used as an input vector for Neural Network( NN) classifier,Support Vector Machine ( SVM ) classifier, and Linear Discriminant Analysis ( LDA ) classifier. The recognition result using BCI2003 competition data set is compared with the best result of the competition,and the classification results show the higher recognition rate of the algorithm. Moreover, transplanting the trained successfully model into embedded motor steering control system based on EEG,and the average recognition accuracy of 91. 3% is obtained. The method provides a new idea for the study of embedded BCI system for practical application.