计算机工程与设计
計算機工程與設計
계산궤공정여설계
COMPUTER ENGINEERING AND DESIGN
2014年
10期
3679-3684
,共6页
彭宇倩%曾碧%肖红%何元烈
彭宇倩%曾碧%肖紅%何元烈
팽우천%증벽%초홍%하원렬
接受信号强度指示%人工神经网络%参数估计值%Zigbee%定位算法
接受信號彊度指示%人工神經網絡%參數估計值%Zigbee%定位算法
접수신호강도지시%인공신경망락%삼수고계치%Zigbee%정위산법
RSSI%artificial neural network%parameter estimates%Zigbee%position algorithm
为减小测距技术中的非视距误差并解决定位模型中存在的问题,提出一种实时动态参数定位方法。基于人工神经网络算法,利用多个参考节点获取的测量值的非视距(NLOS)误差,使测量值 RSSI接近视距(LOS)环境下的测量值;通过该区域内选定的参考节点之间的相互通信实时动态地估算出环境参数值。实验结果表明,该算法缩减了在RSSI测距技术中的非视距误差,并能根据实际环境条件实时动态地调整定位模型的参数,有效提高定位精度。
為減小測距技術中的非視距誤差併解決定位模型中存在的問題,提齣一種實時動態參數定位方法。基于人工神經網絡算法,利用多箇參攷節點穫取的測量值的非視距(NLOS)誤差,使測量值 RSSI接近視距(LOS)環境下的測量值;通過該區域內選定的參攷節點之間的相互通信實時動態地估算齣環境參數值。實驗結果錶明,該算法縮減瞭在RSSI測距技術中的非視距誤差,併能根據實際環境條件實時動態地調整定位模型的參數,有效提高定位精度。
위감소측거기술중적비시거오차병해결정위모형중존재적문제,제출일충실시동태삼수정위방법。기우인공신경망락산법,이용다개삼고절점획취적측량치적비시거(NLOS)오차,사측량치 RSSI접근시거(LOS)배경하적측량치;통과해구역내선정적삼고절점지간적상호통신실시동태지고산출배경삼수치。실험결과표명,해산법축감료재RSSI측거기술중적비시거오차,병능근거실제배경조건실시동태지조정정위모형적삼수,유효제고정위정도。
To minimize none line of sight error in ranging techniques and to solve problems in locating method ,a novel locating method based on real-time dynamic parameters was presented .The artificial neural network algorithm was utilized for correcting measured value’s non-line of sight error produced by multiple reference nodes ,which made the processed RSSI value close to the RSSI value measured by stadia .And the environmental parameters were estimated real-timely through the communication be-tween the reference nodes in the selected region .Experimental results show that this algorithm not only reduces the NLOS er-ror ,but also adjusts the transmission parameters of the model dynamically according to the actual environmental conditions .It improves the positioning accuracy effectively .