计算机工程与设计
計算機工程與設計
계산궤공정여설계
COMPUTER ENGINEERING AND DESIGN
2014年
10期
3584-3588
,共5页
王旭婧%陈长兴%王明芳%任晓岳%屈坤
王旭婧%陳長興%王明芳%任曉嶽%屈坤
왕욱청%진장흥%왕명방%임효악%굴곤
故障诊断%最小二乘支持向量机%沃尔泰拉级数%模拟电路%特征提取
故障診斷%最小二乘支持嚮量機%沃爾泰拉級數%模擬電路%特徵提取
고장진단%최소이승지지향량궤%옥이태랍급수%모의전로%특정제취
fault diagnosis%LS-SVM%Volterra series%analog circuit%feature extraction
针对模拟电路的固有复杂性及其传统故障检测方法存在延时大和正确识别率低的问题,提出基于最小二乘支持向量机和Volterra级数的故障诊断方法。采用Volterra级数频域核对电路故障特征进行提取,利用最小二乘支持向量机进行模态分类,最终完成故障诊断。仿真结果表明,该方法与BP神经网络相比提高了系统故障辨识能力与系统故障诊断速度。
針對模擬電路的固有複雜性及其傳統故障檢測方法存在延時大和正確識彆率低的問題,提齣基于最小二乘支持嚮量機和Volterra級數的故障診斷方法。採用Volterra級數頻域覈對電路故障特徵進行提取,利用最小二乘支持嚮量機進行模態分類,最終完成故障診斷。倣真結果錶明,該方法與BP神經網絡相比提高瞭繫統故障辨識能力與繫統故障診斷速度。
침대모의전로적고유복잡성급기전통고장검측방법존재연시대화정학식별솔저적문제,제출기우최소이승지지향량궤화Volterra급수적고장진단방법。채용Volterra급수빈역핵대전로고장특정진행제취,이용최소이승지지향량궤진행모태분류,최종완성고장진단。방진결과표명,해방법여BP신경망락상비제고료계통고장변식능력여계통고장진단속도。
To solve the problem of analog circuit complexity ,long time diagnosis and low correct recognition rate in traditional fault diagnosis ,a new fault diagnosis method was proposed which combined least squares support vector machine (LS-SVM) and Volterra series .The circuit feature extraction was completed by using Volterra frequency-domain core ,LS-SVM was used to do modal classification and finally the fault diagnosis was accomplished .Simulation results show that this method ,compared with traditional BP neural network ,is more efficient and accurate in system fault recognition and diagnosis .