计算机工程
計算機工程
계산궤공정
COMPUTER ENGINEERING
2014年
9期
252-256
,共5页
流形学习%最大间距准则%散度矩阵%二维保局投影%最小相关性%人脸识别
流形學習%最大間距準則%散度矩陣%二維保跼投影%最小相關性%人臉識彆
류형학습%최대간거준칙%산도구진%이유보국투영%최소상관성%인검식별
manifold learning%Maximum Margin Criterion ( MMC )%divergence matrix%Two-dimensional Locality Preserving Projection(2DLPP)%minimum correlation%face recognition
传统的二维保局投影(2DLPP)算法未考虑样本邻域间局部信息,并且所提取的特征矩阵分量间存在相关性。针对该问题,提出基于大间距准则的最小相关性监督2 DLPP算法。引入类间局部散度矩阵和类内局部散度矩阵,最大化带权的散度矩阵迹差,以增大样本类间散度,减小样本类内散度,从而更好地刻画数据的流形结构。计算所提取特征矩阵各分量间的协方差矩阵,通过最小相关性分析,减少特征信息的冗余。在Yale和ORL人脸库上进行仿真实验,结果显示,当训练样本数为5时,该算法的最高识别率分别为92.5%和96.2%,与传统2 DLPP算法、二维主成分分析法、二维线性判别分析法和二维大间距准则法相比,识别率均有所提高。同时对不同训练样本数下识别率均值和方差进行分析,验证了算法的稳定性。
傳統的二維保跼投影(2DLPP)算法未攷慮樣本鄰域間跼部信息,併且所提取的特徵矩陣分量間存在相關性。針對該問題,提齣基于大間距準則的最小相關性鑑督2 DLPP算法。引入類間跼部散度矩陣和類內跼部散度矩陣,最大化帶權的散度矩陣跡差,以增大樣本類間散度,減小樣本類內散度,從而更好地刻畫數據的流形結構。計算所提取特徵矩陣各分量間的協方差矩陣,通過最小相關性分析,減少特徵信息的冗餘。在Yale和ORL人臉庫上進行倣真實驗,結果顯示,噹訓練樣本數為5時,該算法的最高識彆率分彆為92.5%和96.2%,與傳統2 DLPP算法、二維主成分分析法、二維線性判彆分析法和二維大間距準則法相比,識彆率均有所提高。同時對不同訓練樣本數下識彆率均值和方差進行分析,驗證瞭算法的穩定性。
전통적이유보국투영(2DLPP)산법미고필양본린역간국부신식,병차소제취적특정구진분량간존재상관성。침대해문제,제출기우대간거준칙적최소상관성감독2 DLPP산법。인입류간국부산도구진화류내국부산도구진,최대화대권적산도구진적차,이증대양본류간산도,감소양본류내산도,종이경호지각화수거적류형결구。계산소제취특정구진각분량간적협방차구진,통과최소상관성분석,감소특정신식적용여。재Yale화ORL인검고상진행방진실험,결과현시,당훈련양본수위5시,해산법적최고식별솔분별위92.5%화96.2%,여전통2 DLPP산법、이유주성분분석법、이유선성판별분석법화이유대간거준칙법상비,식별솔균유소제고。동시대불동훈련양본수하식별솔균치화방차진행분석,험증료산법적은정성。
Two-dimensional Locality Preserving Projection(2DLPP) ignores the face sample local information between neighborhood and the correlation between the extracted feature matrix component problems. Aiming at this problem,the minimum correlated supervision 2DLPP algorithm based on Maximum Margin Criterion(MMC) is proposed. Between class local scatter matrix and within class local scatter matrix are brought in, which maximize the trace difference of scatter matrix to increase the sample’ s between-class scatter and decrease within-class scatter,then manifold structure of data can be characterized better. It calculates the covariance matrix of extracted feature matrix, reduces the feature redundant. Experiments on Yale and ORL face database are done,when the train sample number is 5,the result shows that the highest recognition rates are 92. 5% and 96. 2%,the recognition rate is higher than traditional 2DLPP algorithm,Two-dimension Principal Component Analysis(2DPCA) algorithm,Two-dimension Linear Discriminate Analysis(2DLDA) algorithm and Two-dimension Maximum Margin Criterion(2DMCC) algorithm. It also analyses the mean and variance of recognition rate to prove the stability of the improved algorithm.