计算机工程
計算機工程
계산궤공정
COMPUTER ENGINEERING
2014年
9期
155-158,166
,共5页
双线性对%秘密共享%多秘密共享%秘密份额%Hermite插值%双线性Diffie-Hellman问题
雙線性對%祕密共享%多祕密共享%祕密份額%Hermite插值%雙線性Diffie-Hellman問題
쌍선성대%비밀공향%다비밀공향%비밀빈액%Hermite삽치%쌍선성Diffie-Hellman문제
bilinear pairings%secret sharing%multi-secret sharing%secret share%Hermite interpolation%Bilinear Diffie-Hellman Problem( BDHP)
现有可公开验证多秘密共享方案只能由Lagrange插值多项式构造,且共享的秘密仅限于有限域或加法群。为解决上述问题,提出一个基于双线性对的可公开验证多秘密共享方案。该方案中每个参与者需持有2个秘密份额来重构多个秘密,并且在秘密分发的同时生成验证信息。任何人都可以通过公开的验证信息对秘密份额的有效性进行验证,及时检测分发者和参与者的欺骗行为。在秘密重构阶段采用Hermite插值定理重构秘密多项式,并结合双线性运算重构秘密。分析结果表明,在双线性Diffie-Hellman问题假设下,该方案能抵抗内外部攻击,具有较高的安全性。
現有可公開驗證多祕密共享方案隻能由Lagrange插值多項式構造,且共享的祕密僅限于有限域或加法群。為解決上述問題,提齣一箇基于雙線性對的可公開驗證多祕密共享方案。該方案中每箇參與者需持有2箇祕密份額來重構多箇祕密,併且在祕密分髮的同時生成驗證信息。任何人都可以通過公開的驗證信息對祕密份額的有效性進行驗證,及時檢測分髮者和參與者的欺騙行為。在祕密重構階段採用Hermite插值定理重構祕密多項式,併結閤雙線性運算重構祕密。分析結果錶明,在雙線性Diffie-Hellman問題假設下,該方案能牴抗內外部攻擊,具有較高的安全性。
현유가공개험증다비밀공향방안지능유Lagrange삽치다항식구조,차공향적비밀부한우유한역혹가법군。위해결상술문제,제출일개기우쌍선성대적가공개험증다비밀공향방안。해방안중매개삼여자수지유2개비밀빈액래중구다개비밀,병차재비밀분발적동시생성험증신식。임하인도가이통과공개적험증신식대비밀빈액적유효성진행험증,급시검측분발자화삼여자적기편행위。재비밀중구계단채용Hermite삽치정리중구비밀다항식,병결합쌍선성운산중구비밀。분석결과표명,재쌍선성Diffie-Hellman문제가설하,해방안능저항내외부공격,구유교고적안전성。
In order to solve the problems that the previous publicly verifiable multi-secret sharing schemes can be constructed only by Lagrange interpolation polynomial and the shared secret is limited to the finite field or additive group,a publicly verifiable multi-secret sharing scheme based on bilinear pairings is proposed. In the scheme, each participant has to hold two shares for reconstructing multiple secrets,and the verification information is generated in the process of secret distribution. According to public verification information,anyone can verify the validity of secret shares. Cheating of dealer and participants can be detected in time. In the secret reconstructing process, Hermite interpolation theorem is used to reconstruct the secret polynomial,and bilinear operation is combined to reconstruct the secret. Under the assumptions of Bilinear Diffie-Hellman Problem( BDHP) ,the analysis result shows that this scheme can resist internal and external attacks and is a secure and efficient multi-secret sharing scheme.