粉末冶金材料科学与工程
粉末冶金材料科學與工程
분말야금재료과학여공정
POWDER METALLURGY MATERIALS SCIENCE AND ENGINEERING
2014年
4期
559-564
,共6页
共烧结%钴铬钼合金%氧化锆%界面结合强度
共燒結%鈷鉻鉬閤金%氧化鋯%界麵結閤彊度
공소결%고락목합금%양화고%계면결합강도
Co-sintering%Co-Cr-Mo alloy%ZrO2%Interface bending strength
为获得界面结合良好的Co-Cr-Mo合金/ZrO2连接,研究不同孔隙度的Co-Cr-Mo合金和ZrO2陶瓷分别在1300、1350、1400℃下的单组元烧结行为以及Co-Cr-Mo合金与 ZrO2的共烧结行为。测定烧结试样的密度与抗弯强度,利用扫描电镜(SEM)分析Co-Cr-Mo/ZrO2界面元素分布。结果表明:低孔隙度的Co-Cr-Mo合金收缩更快,因而可通过控制Co-Cr-Mo合金的孔隙度来控制其收缩,使其与ZrO2的收缩行为相近;随烧结温度升高,界面结合强度增加;相同温度下高孔隙度的Co-Cr-Mo与 ZrO2的界面结合强度比低孔隙度的Co-Cr-Mo与 ZrO2的界面结合强度大,1400℃下烧结2 h,其界面结合强度达到35.06 MPa;随烧结温度升高和Co-Cr-Mo合金孔隙度增加,Co-Cr-Mo合金/ZrO2界面处的孔隙和裂纹减少,同时在垂直于界面方向存在1个1~2μm厚度的元素扩散区域。
為穫得界麵結閤良好的Co-Cr-Mo閤金/ZrO2連接,研究不同孔隙度的Co-Cr-Mo閤金和ZrO2陶瓷分彆在1300、1350、1400℃下的單組元燒結行為以及Co-Cr-Mo閤金與 ZrO2的共燒結行為。測定燒結試樣的密度與抗彎彊度,利用掃描電鏡(SEM)分析Co-Cr-Mo/ZrO2界麵元素分佈。結果錶明:低孔隙度的Co-Cr-Mo閤金收縮更快,因而可通過控製Co-Cr-Mo閤金的孔隙度來控製其收縮,使其與ZrO2的收縮行為相近;隨燒結溫度升高,界麵結閤彊度增加;相同溫度下高孔隙度的Co-Cr-Mo與 ZrO2的界麵結閤彊度比低孔隙度的Co-Cr-Mo與 ZrO2的界麵結閤彊度大,1400℃下燒結2 h,其界麵結閤彊度達到35.06 MPa;隨燒結溫度升高和Co-Cr-Mo閤金孔隙度增加,Co-Cr-Mo閤金/ZrO2界麵處的孔隙和裂紋減少,同時在垂直于界麵方嚮存在1箇1~2μm厚度的元素擴散區域。
위획득계면결합량호적Co-Cr-Mo합금/ZrO2련접,연구불동공극도적Co-Cr-Mo합금화ZrO2도자분별재1300、1350、1400℃하적단조원소결행위이급Co-Cr-Mo합금여 ZrO2적공소결행위。측정소결시양적밀도여항만강도,이용소묘전경(SEM)분석Co-Cr-Mo/ZrO2계면원소분포。결과표명:저공극도적Co-Cr-Mo합금수축경쾌,인이가통과공제Co-Cr-Mo합금적공극도래공제기수축,사기여ZrO2적수축행위상근;수소결온도승고,계면결합강도증가;상동온도하고공극도적Co-Cr-Mo여 ZrO2적계면결합강도비저공극도적Co-Cr-Mo여 ZrO2적계면결합강도대,1400℃하소결2 h,기계면결합강도체도35.06 MPa;수소결온도승고화Co-Cr-Mo합금공극도증가,Co-Cr-Mo합금/ZrO2계면처적공극화렬문감소,동시재수직우계면방향존재1개1~2μm후도적원소확산구역。
In order to obtain excellent interface bonding of Co-Cr-Mo alloy/ZrO2 joint, one-component sintering behavior of different porosity Co-Cr-Mo alloy and ZrO2 as well as co-sintering behavior of different porosity Co-Cr-Mo alloy/ZrO2 at 1 300, 1 350 and 1 400℃respectively were investigated. The density and bending strength of materials were measured. Scanning electron microscopy (SEM) was employed to investigate the distribution of interface elements. The results show that, low porosity Co-Cr-Mo alloy shrinks faster than high porosity Co-Cr-Mo alloy, so the shrinkage of Co-Cr-Mo alloy can be controlled by means of controlling porosity to make Co-Cr-Mo alloy and ZrO2 have similar shrinkage behavior; the strength of interface bonding increases with increasing sintering temperature and the interface bonding strength of high porosity Co-Cr-Mo alloy/ZrO2 is greater than that of low porosity Co-Cr-Mo alloy/ZrO2 at the same temperature and the interface bonding strength of high porosity Co-Cr-Mo alloy/ZrO2 can reache 35.06 MPa when sintered at 1 400℃for 2 h, The porosity and crack of Co-Cr-Mo alloy/ZrO2 interface decrease with increasing sintering temperature and Co-Cr-Mo alloy porosity, at the same time on the longitudinal-section perpendicular to the Co-Cr-Mo alloy/ZrO2 interface there is a 1~2μm elements diffusion region.