河南科学
河南科學
하남과학
HENAN SCIENCE
2014年
8期
1467-1469
,共3页
带隙基准%分段曲率补偿%温度系数
帶隙基準%分段麯率補償%溫度繫數
대극기준%분단곡솔보상%온도계수
bandgap reference%piecewise curvature compensation%temperature coefficient
设计了一种利用MOS晶体管产生正负温度系数电流的新型带隙基准电压源,并采用分段曲率补偿技术,从而降低基准电压的温度系数,同时增加工作温度范围.该电路使用TSMC 0.6 um标准CMOS工艺进行设计, Spectre仿真结果表明,电源电压为1.5 V,温度范围为-15~95℃时,温度系数为107 ppm/℃,采用分段曲率补偿后,温度系数降为4.28 ppm/℃.
設計瞭一種利用MOS晶體管產生正負溫度繫數電流的新型帶隙基準電壓源,併採用分段麯率補償技術,從而降低基準電壓的溫度繫數,同時增加工作溫度範圍.該電路使用TSMC 0.6 um標準CMOS工藝進行設計, Spectre倣真結果錶明,電源電壓為1.5 V,溫度範圍為-15~95℃時,溫度繫數為107 ppm/℃,採用分段麯率補償後,溫度繫數降為4.28 ppm/℃.
설계료일충이용MOS정체관산생정부온도계수전류적신형대극기준전압원,병채용분단곡솔보상기술,종이강저기준전압적온도계수,동시증가공작온도범위.해전로사용TSMC 0.6 um표준CMOS공예진행설계, Spectre방진결과표명,전원전압위1.5 V,온도범위위-15~95℃시,온도계수위107 ppm/℃,채용분단곡솔보상후,온도계수강위4.28 ppm/℃.
This paper presents a high precision bandgap reference voltage circuit,which utilizes MOS transistors to generate positive and negative TC(temperature coefficient)currents. A piecewise curvature compensation technique is used to reduce the temperature coefficient within wider temperature range. The proposed circuit is designed by TMSC 0.6 um standard CMOS process. Cadence Spectre simulations demonstrate that the reference voltage temperature coefficient is 4.28 ppm/℃with compensation and 125 ppm/℃without compensation in the temperature range from-15℃to 95℃under a 1.5 V supply voltage.