岩土力学
巖土力學
암토역학
ROCK AND SOIL MECHANICS
2014年
9期
2555-2561
,共7页
微观结构%孔隙%水泥土%硫酸钠%平均直径
微觀結構%孔隙%水泥土%硫痠鈉%平均直徑
미관결구%공극%수니토%류산납%평균직경
microscopic structure%pore%cemented soil%sodium sulfate%average diameter
通过不同含量的硫酸钠水泥土抗压强度测试,分析硫酸钠对水泥土 X 射线衍射(XRD)物相成分改变的化学反应过程,对比分析经Image-ProPlus6.0(IPP)软件处理前、后的微观扫描电镜试验(SEM)图像,计算放大200倍下SEM图像的孔隙平均直径分布规律,探讨硫酸钠对水泥土宏观强度与微观孔隙的影响规律。结果表明,硫酸钠充分参与了水泥土的固化过程,促进了Ca(OH)2、CaSO4、CaCO3与C-A-S-H等水化产物的生成;水泥土强度随硫酸钠含量增加而增大,在含量等于9g/kg时达到最大值;硫酸钠使水泥土的孔径分布发生改变,放大200倍下水泥土微观图像孔隙率随着硫酸钠含量的增大呈减小趋势;当硫酸钠含量小于9g/kg时,生成的水化产物使水泥土的结构呈现较强的粒状-镶嵌-胶结结构,对强度有利,当硫酸钠含量较大时,水化产物产生的膨胀力大于胶结力,使其强度下降。
通過不同含量的硫痠鈉水泥土抗壓彊度測試,分析硫痠鈉對水泥土 X 射線衍射(XRD)物相成分改變的化學反應過程,對比分析經Image-ProPlus6.0(IPP)軟件處理前、後的微觀掃描電鏡試驗(SEM)圖像,計算放大200倍下SEM圖像的孔隙平均直徑分佈規律,探討硫痠鈉對水泥土宏觀彊度與微觀孔隙的影響規律。結果錶明,硫痠鈉充分參與瞭水泥土的固化過程,促進瞭Ca(OH)2、CaSO4、CaCO3與C-A-S-H等水化產物的生成;水泥土彊度隨硫痠鈉含量增加而增大,在含量等于9g/kg時達到最大值;硫痠鈉使水泥土的孔徑分佈髮生改變,放大200倍下水泥土微觀圖像孔隙率隨著硫痠鈉含量的增大呈減小趨勢;噹硫痠鈉含量小于9g/kg時,生成的水化產物使水泥土的結構呈現較彊的粒狀-鑲嵌-膠結結構,對彊度有利,噹硫痠鈉含量較大時,水化產物產生的膨脹力大于膠結力,使其彊度下降。
통과불동함량적류산납수니토항압강도측시,분석류산납대수니토 X 사선연사(XRD)물상성분개변적화학반응과정,대비분석경Image-ProPlus6.0(IPP)연건처리전、후적미관소묘전경시험(SEM)도상,계산방대200배하SEM도상적공극평균직경분포규률,탐토류산납대수니토굉관강도여미관공극적영향규률。결과표명,류산납충분삼여료수니토적고화과정,촉진료Ca(OH)2、CaSO4、CaCO3여C-A-S-H등수화산물적생성;수니토강도수류산납함량증가이증대,재함량등우9g/kg시체도최대치;류산납사수니토적공경분포발생개변,방대200배하수니토미관도상공극솔수착류산납함량적증대정감소추세;당류산납함량소우9g/kg시,생성적수화산물사수니토적결구정현교강적립상-양감-효결결구,대강도유리,당류산납함량교대시,수화산물산생적팽창력대우효결력,사기강도하강。
In order to simulate and study the effect process and mechanism of cemented soil by different sodium sulfate contents, a series of tests are conducted on the cemented soil samples, such as compression strength test, X-ray diffraction (XRD) phase test and scanning electron microscope (SEM) test, SEM pictures processed by Image-ProPlus6.0(IPP)software; the distribution of pore average diameter of SEM pictures at 200 magnified times is calculated. The test results show that the compressive strength of cemented soil increases with the increase of sodium sulfate content;and the value reaches its peak when the content is 9 g/kg. The distribution of cemented soil pore changes owe to sodium sulfate, and the porosity of SEM photo at 200 times decreases. From the SEM photos analyses show that the microscopic structure of cemented soil by sodium sulfate exhibits the granularity-inlay-cement. Chemical products are analyzed by means of XRD test. The testing results show that the chemical products become more such as Ca(OH)2, CaSO4, CaCO3 and C-A-S-H, after the sodium sulfate participated in chemical reactions. Those chemical products mainly play the role of crystallization action in the chemical reaction process, which is good for cemented soil strength when the chemical products in the sample with sodium sulfate content lower than 9 g/kg. With the sodium sulfate content increasing, the gel around soil particles is broken down, which make the strength of cement soil decrease.