计算机技术与发展
計算機技術與髮展
계산궤기술여발전
COMPUTER TECHNOLOGY AND DEVELOPMENT
2014年
9期
59-62,67
,共5页
协同过滤%非负矩阵分解%相似度%谱聚类
協同過濾%非負矩陣分解%相似度%譜聚類
협동과려%비부구진분해%상사도%보취류
collaborative filtering%Non-negative Matrix Factorization ( NMF)%similarity%spectral clustering
针对电子商务系统中传统协同过滤推荐算法面临的稀疏性、准确性、实时性等问题,提出了一种基于用户谱聚类的协同过滤推荐算法。首先利用非负矩阵分解的方法对原始稀疏评分矩阵进行平滑处理,然后利用改进相似度的谱聚类方法将用户聚类,最后在用户所属类中寻找最近邻并产生推荐。用户谱聚类过程可离线完成,加快了在线推荐速度。在数据集MovieLens上的实验结果表明,该算法在平均绝对偏差、召回率、准确率等方面都有了较大改善,提高了推荐质量。
針對電子商務繫統中傳統協同過濾推薦算法麵臨的稀疏性、準確性、實時性等問題,提齣瞭一種基于用戶譜聚類的協同過濾推薦算法。首先利用非負矩陣分解的方法對原始稀疏評分矩陣進行平滑處理,然後利用改進相似度的譜聚類方法將用戶聚類,最後在用戶所屬類中尋找最近鄰併產生推薦。用戶譜聚類過程可離線完成,加快瞭在線推薦速度。在數據集MovieLens上的實驗結果錶明,該算法在平均絕對偏差、召迴率、準確率等方麵都有瞭較大改善,提高瞭推薦質量。
침대전자상무계통중전통협동과려추천산법면림적희소성、준학성、실시성등문제,제출료일충기우용호보취류적협동과려추천산법。수선이용비부구진분해적방법대원시희소평분구진진행평활처리,연후이용개진상사도적보취류방법장용호취류,최후재용호소속류중심조최근린병산생추천。용호보취류과정가리선완성,가쾌료재선추천속도。재수거집MovieLens상적실험결과표명,해산법재평균절대편차、소회솔、준학솔등방면도유료교대개선,제고료추천질량。
Abatract:Considering the sparsity,accuracy and the real-time problem of traditional collaborative filtering recommendation algorithms in electronic commerce system,a new collaborative filtering algorithm based on user spectral clustering is proposed. Firstly,it employs non-negative matrix factorization algorithm to fill the missing ratings. Then,it uses spectral clustering method of improved similarity to cluster users. Finally,it finds the nearest neighbors of the user according to the user's cluster and generates recommendations. Spectral clustering can be performed by off-line,which will accelerate the speed of online recommendation. The experimental results on MovieLens show that the new algorithm improves recommendation quality in MAE,recall and precision.