商丘师范学院学报
商丘師範學院學報
상구사범학원학보
JOURNAL OF SHANGQIU TEACHERS COLLEGE
2014年
9期
4-9
,共6页
陈松良%蒋启燕%莫贵圈%崔忠伟
陳鬆良%蔣啟燕%莫貴圈%崔忠偉
진송량%장계연%막귀권%최충위
有限群%同构分类%群的构造
有限群%同構分類%群的構造
유한군%동구분류%군적구조
finite group%isomorphic classification%structure of group
设G是72(即23·32)阶群,采用新的方法对群G进行了完全分类,证明了G共有50种不同构的类型:若Sylow子群都正规,则G有10种;若Sylow 2-子群正规而Sylow 3-子群不正规,则G有4种;若Sylow 3-子群正规而Sylow 2-子群不正规,则G有32种;若Sylow子群都不正规,则G有4种。
設G是72(即23·32)階群,採用新的方法對群G進行瞭完全分類,證明瞭G共有50種不同構的類型:若Sylow子群都正規,則G有10種;若Sylow 2-子群正規而Sylow 3-子群不正規,則G有4種;若Sylow 3-子群正規而Sylow 2-子群不正規,則G有32種;若Sylow子群都不正規,則G有4種。
설G시72(즉23·32)계군,채용신적방법대군G진행료완전분류,증명료G공유50충불동구적류형:약Sylow자군도정규,칙G유10충;약Sylow 2-자군정규이Sylow 3-자군불정규,칙G유4충;약Sylow 3-자군정규이Sylow 2-자군불정규,칙G유32충;약Sylow자군도불정규,칙G유4충。
Let G be finite groups of order 72 ( i.e.23 · 32 ).In this paper, we have showed that G has 50 nonisomorphic types,i.e.1)If every Sylow subgroup is normal , G has 10 nonisomorphic types;2) If every Sylow 2-subgroup is normal and every Sylow 3-subgroup is non -normal, G has 4 nonisomorphic types;3 ) If every Sylow 3-subgroup is normal and every Sylow 2-subgroup is non -normal, G has 32 nonisomorphic types;4) If every Sylow subgroup is non -normal , G has 4 nonisomorphic types .