华东交通大学学报
華東交通大學學報
화동교통대학학보
JOURNAL OF EAST CHINA JIAOTONG UNIVERSITY
2014年
4期
71-76
,共6页
曾毅%朱旭生%廖国勇
曾毅%硃旭生%廖國勇
증의%주욱생%료국용
粒子群优化算法%协同进化%邻域极值数
粒子群優化算法%協同進化%鄰域極值數
입자군우화산법%협동진화%린역겁치수
PSO%cooperative coevolution%the neighborhood extremum number
提出了一种基于邻域极值数的协同粒子群优化算法。该算法将种群分为若干个独立进化的子种群。根据邻域极值数确定各子种群的生存状态。根据子种群的生存状态对子种群实施相应的控制操作,提高子种群的搜索能力,实现子种群之间的信息共享,共同进化。测试结果表明基于邻域极值数的协同粒子群优化算法是一种高效稳健的全局优化算法。
提齣瞭一種基于鄰域極值數的協同粒子群優化算法。該算法將種群分為若榦箇獨立進化的子種群。根據鄰域極值數確定各子種群的生存狀態。根據子種群的生存狀態對子種群實施相應的控製操作,提高子種群的搜索能力,實現子種群之間的信息共享,共同進化。測試結果錶明基于鄰域極值數的協同粒子群優化算法是一種高效穩健的全跼優化算法。
제출료일충기우린역겁치수적협동입자군우화산법。해산법장충군분위약간개독립진화적자충군。근거린역겁치수학정각자충군적생존상태。근거자충군적생존상태대자충군실시상응적공제조작,제고자충군적수색능력,실현자충군지간적신식공향,공동진화。측시결과표명기우린역겁치수적협동입자군우화산법시일충고효은건적전국우화산법。
A cooperative particle swarm optimization based on the neighborhood extremum number is proposed. In this algorithm, the whole population is divided into several sub-populations evolving independently. The survival state of each sub-population is determined in terms of the neighborhood extremum number. Based on the survival state of each sub-population, corresponding control operation is implemented so as to improve the search ability of each sub-population and realize information sharing so that the sub-populations coevolve. The experimental re-sults show that the cooperative particle swarm optimization based on the neighborhood extremum number is an ef-fective and steady global optimization algorithm.