振动与冲击
振動與遲擊
진동여충격
JOURNAL OF VIBRATION AND SHOCK
2014年
18期
1-6,20
,共7页
张飞霆%杨智春%高扬%赵令诚
張飛霆%楊智春%高颺%趙令誠
장비정%양지춘%고양%조령성
壁板颤振%弹性支承%特征值法%有限元法%频率重合
壁闆顫振%彈性支承%特徵值法%有限元法%頻率重閤
벽판전진%탄성지승%특정치법%유한원법%빈솔중합
panel flutter%concentrated elastic support%eigenvalue method%finite element method%frequency coalescence
提出了一种在四边简支曲壁板上附加一个弹性支承来提高曲壁板颤振临界动压的方法,研究了弹性支承的位置和刚度对曲壁板颤振速度的影响规律。应用von Karman大变形应变-位移关系来描述曲壁板的结构大变形,用一阶活塞气动力理论计算曲壁板的气动力,采用虚功原理和有限元方法,建立起带弹性支承的圆柱壳曲壁板在超音速气流中的颤振方程。通过求解曲壁板系统的特征方程获得其颤振临界动压。运用频率重合理论分别分析了改变弹性支承刚度和位置对曲壁板颤振特性的影响。结果表明,与不带弹性支承的曲壁板颤振特性相比,弹性支承位于不同位置时,会对曲壁板的颤振动压产生明显不同的影响:①弹性支承位于曲壁板中心点附近区域或位于弦向中线上时,都会导致曲壁板颤振动压降低且随着支承刚度的增大而减小;在曲壁板中心点处,颤振动压降低幅度最大;②弹性支承位置沿垂直于气流方向且远离弦向中线变化时,都会使颤振动压提高,且随着支承刚度的增大而增大;③当支承位置在前缘和后缘部位顺气流方向变化时,颤振动压都会提高;④采用附加弹性支承的方法来提高曲壁板颤振动压时,应将弹性支承布置在曲壁板展向中线距边界20%弦长处。
提齣瞭一種在四邊簡支麯壁闆上附加一箇彈性支承來提高麯壁闆顫振臨界動壓的方法,研究瞭彈性支承的位置和剛度對麯壁闆顫振速度的影響規律。應用von Karman大變形應變-位移關繫來描述麯壁闆的結構大變形,用一階活塞氣動力理論計算麯壁闆的氣動力,採用虛功原理和有限元方法,建立起帶彈性支承的圓柱殼麯壁闆在超音速氣流中的顫振方程。通過求解麯壁闆繫統的特徵方程穫得其顫振臨界動壓。運用頻率重閤理論分彆分析瞭改變彈性支承剛度和位置對麯壁闆顫振特性的影響。結果錶明,與不帶彈性支承的麯壁闆顫振特性相比,彈性支承位于不同位置時,會對麯壁闆的顫振動壓產生明顯不同的影響:①彈性支承位于麯壁闆中心點附近區域或位于絃嚮中線上時,都會導緻麯壁闆顫振動壓降低且隨著支承剛度的增大而減小;在麯壁闆中心點處,顫振動壓降低幅度最大;②彈性支承位置沿垂直于氣流方嚮且遠離絃嚮中線變化時,都會使顫振動壓提高,且隨著支承剛度的增大而增大;③噹支承位置在前緣和後緣部位順氣流方嚮變化時,顫振動壓都會提高;④採用附加彈性支承的方法來提高麯壁闆顫振動壓時,應將彈性支承佈置在麯壁闆展嚮中線距邊界20%絃長處。
제출료일충재사변간지곡벽판상부가일개탄성지승래제고곡벽판전진림계동압적방법,연구료탄성지승적위치화강도대곡벽판전진속도적영향규률。응용von Karman대변형응변-위이관계래묘술곡벽판적결구대변형,용일계활새기동력이론계산곡벽판적기동력,채용허공원리화유한원방법,건립기대탄성지승적원주각곡벽판재초음속기류중적전진방정。통과구해곡벽판계통적특정방정획득기전진림계동압。운용빈솔중합이론분별분석료개변탄성지승강도화위치대곡벽판전진특성적영향。결과표명,여불대탄성지승적곡벽판전진특성상비,탄성지승위우불동위치시,회대곡벽판적전진동압산생명현불동적영향:①탄성지승위우곡벽판중심점부근구역혹위우현향중선상시,도회도치곡벽판전진동압강저차수착지승강도적증대이감소;재곡벽판중심점처,전진동압강저폭도최대;②탄성지승위치연수직우기류방향차원리현향중선변화시,도회사전진동압제고,차수착지승강도적증대이증대;③당지승위치재전연화후연부위순기류방향변화시,전진동압도회제고;④채용부가탄성지승적방법래제고곡벽판전진동압시,응장탄성지승포치재곡벽판전향중선거변계20%현장처。
A method for increasing the flutter dynamic pressure of curved panels with a concentrated elastic support was proposed and the effects of the concentrated elastic support position and its stiffness on the flutter velocity of curved panels were studied.The nonlinear aeroelastic model of a curved panel with a concentrated elastic support in supersonic air flow was established using the virtual work principle and the finite element method.The large deformation of the curved panel was described by using Von Karman large deformation strain-displacement relationship.The quasi-steady first order piston theory was used to calculate the aerodynamic force acting on the surface of the curved panel.The eigenvalue solution was then utilized to determine the flutter dynamic pressure of the curved panel.The dynamic characteristics of the curved panel were analyzed by changing the stiffness and position of the concentrated elastic support based on the frequency coalescence theory.Results showed that the elastic support located in different positions has significantly different effects on the flutter dynamic pressure;the elastic support located in the central region of the curved panel or in the chordwise middle line leads to a drop of the flutter dynamic pressure,and the flutter dynamic pressure decreases with increase in elastic support stiffness;if the elastic support is located in the center of the curved panel,the flutter dynamic pressure has a maximum drop;when the elastic support position changes along the line perpendicular to the flow stream and is far away from the chordwise middle line,there is an increasing of the flutter dynamic pressure,and the flutter dynamic pressure increases with increase in elastic support stiffness;while the elastic support position changes in the area near leading edge and trailing edge and along the flow stream,the flutter dynamic pressure increase;the method of adding a concentrated elastic support to increase flutter dynamic pressure can be applied as a measure to control the flutter of a curved panel,and the elastic support should be located on the spanwise midline with a distance of 20%chord length from the boundary.