应用光学
應用光學
응용광학
JOURNAL OF APPLIED OPTICS
2014年
5期
811-816
,共6页
郭连朋%陈向宁%刘彬%刘田间
郭連朋%陳嚮寧%劉彬%劉田間
곽련붕%진향저%류빈%류전간
机器视觉%三维重建%深度图像融合%有向距离场%Delaunay三角剖分%Marching Tetra-hedra算法
機器視覺%三維重建%深度圖像融閤%有嚮距離場%Delaunay三角剖分%Marching Tetra-hedra算法
궤기시각%삼유중건%심도도상융합%유향거리장%Delaunay삼각부분%Marching Tetra-hedra산법
computer vision%3D reconstruction%depth images fusion%signed distance field%Delaunay tetrahedralization%Marching Tetrahedra
物体的三维重建技术一直是计算机视觉领域研究的热点问题,提出一种利用Kinect 传感器获取的深度图像实现多幅深度图像融合完成物体三维重建的方法。在图像空间中对深度图像进行三角化,然后在尺度空间中融合所有三角化的深度图像构建分层有向距离场(hierar-chical signed distance field),对距离场中所有的体素应用整体Delaunay三角剖分算法产生一个涵盖所有体素的凸包,并利用Marching Tetrahedra算法构造等值面,完成物体表面重建。实验结果表明,该方法利用Kinect传感器采集的不同方向37幅分辨率为640×480的深度图像完成目标物体的三维重建,仅需要48 s ,并且得到非常精细的重建效果。
物體的三維重建技術一直是計算機視覺領域研究的熱點問題,提齣一種利用Kinect 傳感器穫取的深度圖像實現多幅深度圖像融閤完成物體三維重建的方法。在圖像空間中對深度圖像進行三角化,然後在呎度空間中融閤所有三角化的深度圖像構建分層有嚮距離場(hierar-chical signed distance field),對距離場中所有的體素應用整體Delaunay三角剖分算法產生一箇涵蓋所有體素的凸包,併利用Marching Tetrahedra算法構造等值麵,完成物體錶麵重建。實驗結果錶明,該方法利用Kinect傳感器採集的不同方嚮37幅分辨率為640×480的深度圖像完成目標物體的三維重建,僅需要48 s ,併且得到非常精細的重建效果。
물체적삼유중건기술일직시계산궤시각영역연구적열점문제,제출일충이용Kinect 전감기획취적심도도상실현다폭심도도상융합완성물체삼유중건적방법。재도상공간중대심도도상진행삼각화,연후재척도공간중융합소유삼각화적심도도상구건분층유향거리장(hierar-chical signed distance field),대거리장중소유적체소응용정체Delaunay삼각부분산법산생일개함개소유체소적철포,병이용Marching Tetrahedra산법구조등치면,완성물체표면중건。실험결과표명,해방법이용Kinect전감기채집적불동방향37폭분변솔위640×480적심도도상완성목표물체적삼유중건,부수요48 s ,병차득도비상정세적중건효과。
3D reconstruction of object is an interest subject in computer vision .A method for 3D reconstruction of object was proposed by integrating a set of depth maps obtained by Kinect sensor .To aggregate the contributions of the depth images at their corresponding scale ,the depth images were triangulated in image space firstly ,and the next step was to insert the trian-gulated depth images into the hierarchical signed distance field ,then the global Delaunay tetra-hedralization was applied to all the voxel positions yielding a convex hull that covers all the voxels ,and the marching tetrahedra algorithm was applied to the resulting tetrahedral mesh for extracting the surface .Experimental results show that this method can make use of 37 depth images by Kinect sensor at different directions with the resolution of 640 × 480 to extract high-quality surfaces ,w hich only costs 48 s .