高等学校化学学报
高等學校化學學報
고등학교화학학보
CHEMICAL JOURNAL OF CHINESE UNIVERSITIES
2014年
9期
1954-1961
,共8页
徐鹏%李佑稷%刘晨%李铭%邓瑞成
徐鵬%李祐稷%劉晨%李銘%鄧瑞成
서붕%리우직%류신%리명%산서성
溶胶-凝胶法%掺钒二氧化钛%介孔材料%亚甲基蓝%光催化性能
溶膠-凝膠法%摻釩二氧化鈦%介孔材料%亞甲基藍%光催化性能
용효-응효법%참범이양화태%개공재료%아갑기람%광최화성능
Sol-gel method%Vanadium-doped titana%Mesoporous material%Methylene blue%Photocatalytic performance
以表面活性剂十六烷基三甲基溴化铵( CTAB)为模板,钛酸四正丁酯为钛源,偏钒酸铵为掺杂离子前驱体,通过液晶模板辅助溶胶-凝胶法制备钒掺杂介孔TiO2( VMT),采用X射线衍射( XRD)、 N2吸附-脱附分析、热重-差热分析( TG-DTA)、 X射线光电子能谱( XPS)、紫外-可见光谱( UV-Vis)和透射电子显微镜( TEM)等对样品结构进行表征,选择亚甲基蓝为目标降解物,对VMT的可见光催化性能进行了研究.结果表明,钒掺杂减小了介孔TiO2( MT)的粒径和光生电子-空穴复合率,增大了比表面积及Ti3+和羟基浓度,导致VMT比纯MT和P25光催化活性高,并且钒掺杂使MT带隙能降低,使其具有很高的可见光催化活性.最佳的光催化条件为:VMT的浓度为0.83 g/L, MB的浓度为1 mg/L.
以錶麵活性劑十六烷基三甲基溴化銨( CTAB)為模闆,鈦痠四正丁酯為鈦源,偏釩痠銨為摻雜離子前驅體,通過液晶模闆輔助溶膠-凝膠法製備釩摻雜介孔TiO2( VMT),採用X射線衍射( XRD)、 N2吸附-脫附分析、熱重-差熱分析( TG-DTA)、 X射線光電子能譜( XPS)、紫外-可見光譜( UV-Vis)和透射電子顯微鏡( TEM)等對樣品結構進行錶徵,選擇亞甲基藍為目標降解物,對VMT的可見光催化性能進行瞭研究.結果錶明,釩摻雜減小瞭介孔TiO2( MT)的粒徑和光生電子-空穴複閤率,增大瞭比錶麵積及Ti3+和羥基濃度,導緻VMT比純MT和P25光催化活性高,併且釩摻雜使MT帶隙能降低,使其具有很高的可見光催化活性.最佳的光催化條件為:VMT的濃度為0.83 g/L, MB的濃度為1 mg/L.
이표면활성제십륙완기삼갑기추화안( CTAB)위모판,태산사정정지위태원,편범산안위참잡리자전구체,통과액정모판보조용효-응효법제비범참잡개공TiO2( VMT),채용X사선연사( XRD)、 N2흡부-탈부분석、열중-차열분석( TG-DTA)、 X사선광전자능보( XPS)、자외-가견광보( UV-Vis)화투사전자현미경( TEM)등대양품결구진행표정,선택아갑기람위목표강해물,대VMT적가견광최화성능진행료연구.결과표명,범참잡감소료개공TiO2( MT)적립경화광생전자-공혈복합솔,증대료비표면적급Ti3+화간기농도,도치VMT비순MT화P25광최화활성고,병차범참잡사MT대극능강저,사기구유흔고적가견광최화활성.최가적광최화조건위:VMT적농도위0.83 g/L, MB적농도위1 mg/L.
Based on employing the liquid crystal of surfactant cetyltrimethyl ammonium bromide ( CTAB ) , tetrabutyl titanate and ammonium metavanadate as template, titanium source and doping-ion precursor, respectively, vanadium-doped mesoporous titanium dioxide ( VMT ) was obtained by sol-gel method. The structure of obtained sample was characterized via X-ray diffraction(XRD), nitrogen adsorption-desorption, thermogravimetry-differential thermal analysis ( TG-DTA ) , X-ray photoelectron spectroscopy ( XPS ) , UV-Visible diffuse reflection spectrometry( UV-Vis) and transmission electronic microscopy( TEM) . Choosing methylene blue( MB) as the target degradation product, the photocatalytic performance of VMT was discussed under visible light irradiation. The results show that doping vanadium can reduce TiO2 particle size, inhibit photo-electron and hole recombination rate as well as increase specific surface area and the concentration of titanium ion and hydroxyl. Thus VMT exhibits the highest catalytic activity among pure MT, VMT and P25 under UV-light irradiation. In addition, doping vanadium can also lessen MT band-gap energy and improve its catalytic activity under visible light. The optimal photocatalytic condition is as follows: catalyst concentration of 0. 83 g/L and MB concentration of 1 mg/L.