机械工程学报
機械工程學報
궤계공정학보
CHINESE JOURNAL OF MECHANICAL ENGINEERING
2014年
16期
1-5
,共5页
夹芯结构%多孔金属%轻量化%耐撞性%动态响应
夾芯結構%多孔金屬%輕量化%耐撞性%動態響應
협심결구%다공금속%경양화%내당성%동태향응
sandwich panels%cellular metals%lightweight%crashworthiness%dynamic response
以后面板中心点的挠度响应作为多孔金属夹芯复合板耐撞性能的评价指标,基于夹芯结构的理论分析框架模型,采用考虑芯层强度的拉-弯联合作用屈服准则,建立撞击载荷下轻量化多孔金属夹芯复合板动态响应的理论模型。该分析模型将多孔金属夹芯板的整个动态响应过程分为三个连续的阶段:流-固耦合阶段、芯层压缩阶段和夹芯板拉-弯共同作用阶段。第一阶段假定载荷均匀分布在夹芯板前面板的撞击区域,随后在第二阶段渐进压缩芯层,直到夹芯板中心区域的前、后面板和芯层达到共同速度。第三阶段中,基于能量平衡的经典实心板理论和宽泛的夹芯结构屈服准则,给出夹芯板的最大永久挠度和响应时间的解析解。理论预测与试验结果吻合较好。研究结果对多孔金属夹芯复合结构的耐撞性分析和评估具有一定的参考价值。
以後麵闆中心點的撓度響應作為多孔金屬夾芯複閤闆耐撞性能的評價指標,基于夾芯結構的理論分析框架模型,採用攷慮芯層彊度的拉-彎聯閤作用屈服準則,建立撞擊載荷下輕量化多孔金屬夾芯複閤闆動態響應的理論模型。該分析模型將多孔金屬夾芯闆的整箇動態響應過程分為三箇連續的階段:流-固耦閤階段、芯層壓縮階段和夾芯闆拉-彎共同作用階段。第一階段假定載荷均勻分佈在夾芯闆前麵闆的撞擊區域,隨後在第二階段漸進壓縮芯層,直到夾芯闆中心區域的前、後麵闆和芯層達到共同速度。第三階段中,基于能量平衡的經典實心闆理論和寬汎的夾芯結構屈服準則,給齣夾芯闆的最大永久撓度和響應時間的解析解。理論預測與試驗結果吻閤較好。研究結果對多孔金屬夾芯複閤結構的耐撞性分析和評估具有一定的參攷價值。
이후면판중심점적뇨도향응작위다공금속협심복합판내당성능적평개지표,기우협심결구적이론분석광가모형,채용고필심층강도적랍-만연합작용굴복준칙,건립당격재하하경양화다공금속협심복합판동태향응적이론모형。해분석모형장다공금속협심판적정개동태향응과정분위삼개련속적계단:류-고우합계단、심층압축계단화협심판랍-만공동작용계단。제일계단가정재하균균분포재협심판전면판적당격구역,수후재제이계단점진압축심층,직도협심판중심구역적전、후면판화심층체도공동속도。제삼계단중,기우능량평형적경전실심판이론화관범적협심결구굴복준칙,급출협심판적최대영구뇨도화향응시간적해석해。이론예측여시험결과문합교호。연구결과대다공금속협심복합결구적내당성분석화평고구유일정적삼고개치。
Based on the existing three-stage theoretical framework, a theoretical analysis is developed to predict the dynamic response of sandwich panels with cellular metallic cores under impact loading by incorporating a yield locus considering the bending and stretching as well as the strength of the core. The central point permanent deflection of the back face-sheet is considered as an index to evaluate the crashworthiness of sandwich structures. In this analytical solution, the whole response of the sandwich panel is split into three sequential stages:fluid-structure interaction, core compression, and overall bending and stretching. The impulse is assumed to be a uniform distribution over the impact area in the first stage. The metallic foam core is considered approximately to be a progressive compressive mode in the second stage, until the face-sheets and core obtain an equal velocity. In the final stage, a classical monolithic plate theory based on an energy dissipation rate balance approach is employed;the maximum back face-sheet central point deflections and response time are obtained by incorporating a comprehensive yield locus. A reasonable agreement between the theoretical predictions and experimental results is found. The proposed theoretical model is helpful to guide the crashworthiness applications of cellular metallic sandwich structures.