计算机工程与应用
計算機工程與應用
계산궤공정여응용
COMPUTER ENGINEERING AND APPLICATIONS
2014年
18期
182-187
,共6页
离散Reeb图%三维人体点云模型%骨架提取%能量函数最小化
離散Reeb圖%三維人體點雲模型%骨架提取%能量函數最小化
리산Reeb도%삼유인체점운모형%골가제취%능량함수최소화
Discrete Reeb Graph(DRG)%three dimensional human scanning data%extract skeletal curves%minimizing the energy function
针对离散Reeb图(Discrete Reeb Graph,DRG)描述人体骨架时分支部位骨架线偏离中轴的问题,采用了能量函数最小化的方法对DRG曲线进行优化。将人体模型的DRG曲线作为初始骨架,定义其能量函数,在点云模型的距离场梯度的作用下,迭代地调整偏离中轴目标段的曲线位置使其逐渐逼近中轴,能量函数最小时得到优化的骨架。将该算法应用于同一模特四个不同姿势和四个不同模特同一姿势的人体点云模型,并与基于拉普拉斯算子的点云收缩的骨架提取方法进行了比较。结果表明,该算法能够很好地适应各种不同姿势和体型,模型分叉部位的特征得到更加完善的描述,得到的骨架曲线更接近模型的中轴。
針對離散Reeb圖(Discrete Reeb Graph,DRG)描述人體骨架時分支部位骨架線偏離中軸的問題,採用瞭能量函數最小化的方法對DRG麯線進行優化。將人體模型的DRG麯線作為初始骨架,定義其能量函數,在點雲模型的距離場梯度的作用下,迭代地調整偏離中軸目標段的麯線位置使其逐漸逼近中軸,能量函數最小時得到優化的骨架。將該算法應用于同一模特四箇不同姿勢和四箇不同模特同一姿勢的人體點雲模型,併與基于拉普拉斯算子的點雲收縮的骨架提取方法進行瞭比較。結果錶明,該算法能夠很好地適應各種不同姿勢和體型,模型分扠部位的特徵得到更加完善的描述,得到的骨架麯線更接近模型的中軸。
침대리산Reeb도(Discrete Reeb Graph,DRG)묘술인체골가시분지부위골가선편리중축적문제,채용료능량함수최소화적방법대DRG곡선진행우화。장인체모형적DRG곡선작위초시골가,정의기능량함수,재점운모형적거리장제도적작용하,질대지조정편리중축목표단적곡선위치사기축점핍근중축,능량함수최소시득도우화적골가。장해산법응용우동일모특사개불동자세화사개불동모특동일자세적인체점운모형,병여기우랍보랍사산자적점운수축적골가제취방법진행료비교。결과표명,해산법능구흔호지괄응각충불동자세화체형,모형분차부위적특정득도경가완선적묘술,득도적골가곡선경접근모형적중축。
By minimizing the energy function, the optimization algorithm on the Discrete Reeb Graph(DRG)is put forward to reduce the deviation of the branch skeletal curves from the medial axis. The proposed method takes the DRG of the model as the initial skeleton curve, and later defines an energy function to deal with deviation. The distance field gradient of the scanning data leads the initial skeleton curve to the axis position step by step through iteratively adjusting positions of target curve, and the optimized skeletal curves can be realized when the energy value of the curves is minimized. In the experiments, the proposed method is applied to the scanning data of the same model under four different postures and four different models with the same posture respectively, and it also compares this algorithm with curve skeleton extraction via Laplacian-based contraction. The results verify that the optimized algorithm proposed can adapt to different postures and different body types, and ensure that ultimate curves are closest to the medial axis. Moreover, better descriptions on fea-tures of furcation curves can also be obtained.