广州大学学报(自然科学版)
廣州大學學報(自然科學版)
엄주대학학보(자연과학판)
JOURNAL OF GUANGZHOU UNIVERSITY(NATURAL SCIENCE EDITION)
2014年
4期
1-10
,共10页
Riemann-Liouville分数阶导数%Du Bois-Reymond引理%α阶弱局部极值%Euler必要条件%全局极值
Riemann-Liouville分數階導數%Du Bois-Reymond引理%α階弱跼部極值%Euler必要條件%全跼極值
Riemann-Liouville분수계도수%Du Bois-Reymond인리%α계약국부겁치%Euler필요조건%전국겁치
fractional variational problems%Riemann-Liouville fractional derivative%Du Bois-Reymond Lem-ma%α-order weak local minimum%Euler equation%global minimum
考虑Riemann-Liouville分数导数意义下的分数变分问题。首先,对于这类分数变分计算,证明了与古典Du Bois-Reymond 引理相对应的结果。然后,应用该结果建立了分数变分泛函的Euler必要条件。最后,讨论了全局极值问题,得到了一些全局极值存在的充分必要条件。
攷慮Riemann-Liouville分數導數意義下的分數變分問題。首先,對于這類分數變分計算,證明瞭與古典Du Bois-Reymond 引理相對應的結果。然後,應用該結果建立瞭分數變分汎函的Euler必要條件。最後,討論瞭全跼極值問題,得到瞭一些全跼極值存在的充分必要條件。
고필Riemann-Liouville분수도수의의하적분수변분문제。수선,대우저류분수변분계산,증명료여고전Du Bois-Reymond 인리상대응적결과。연후,응용해결과건립료분수변분범함적Euler필요조건。최후,토론료전국겁치문제,득도료일사전국겁치존재적충분필요조건。
The paper concerns with fractional variational problems in terms of the Riemann-Liouville fractional derivative.First, for such kinds of fractional variational calculus , we prove a counterpart of the Du Bois-Rey-mond lemma in the classical calculus of variations .Then, this result is applied to establish the Euler necessary conditions on fractional variational functionals .Finally, we discuss the global minimum problems and obtain some sufficient and necessary conditions on the existence of global minimum .