精密成形工程
精密成形工程
정밀성형공정
METAL FORMING TECHNOLOGY
2014年
5期
25-30,44
,共7页
李恒%杨合%张志勇%宋飞飞%李光俊
李恆%楊閤%張誌勇%宋飛飛%李光俊
리항%양합%장지용%송비비%리광준
高强钛合金管%整体多弯%成形精度%回弹角%回弹半径%伸长
高彊鈦閤金管%整體多彎%成形精度%迴彈角%迴彈半徑%伸長
고강태합금관%정체다만%성형정도%회탄각%회탄반경%신장
high strength titanium alloy tube%multi-bending%forming precision%springback angle%springback radi-us%elongation
目的:研究获得基于多指标的高强 TA18钛管整体多弯管件成形精度控制的方法。方法在获得高强 TA18钛管数控弯曲非线性回弹和伸长规律的基础上,研究回弹角、回弹半径的补偿方法和伸长控制方法,其次将获得的成形精度控制方法进行多弯模拟应用验证。结果对于回弹角和回弹半径,采用先补偿回弹半径再补偿回弹角的两水平顺序控制方法;对于弯曲伸长,采用预先减少管材下料尺寸和改变弯头位置来控制回弹后直线段长度的控制方法。结论应用上述控制方法,将多弯模拟结果与预成形管件几何尺寸进行对比,获得成形角度、半径和直线段长度的最大相对误差分别为1.00%,5.51%和5.04%。上述误差满足多弯管件装配精度要求,证明所提出的成形精度控制方法是可靠的。
目的:研究穫得基于多指標的高彊 TA18鈦管整體多彎管件成形精度控製的方法。方法在穫得高彊 TA18鈦管數控彎麯非線性迴彈和伸長規律的基礎上,研究迴彈角、迴彈半徑的補償方法和伸長控製方法,其次將穫得的成形精度控製方法進行多彎模擬應用驗證。結果對于迴彈角和迴彈半徑,採用先補償迴彈半徑再補償迴彈角的兩水平順序控製方法;對于彎麯伸長,採用預先減少管材下料呎吋和改變彎頭位置來控製迴彈後直線段長度的控製方法。結論應用上述控製方法,將多彎模擬結果與預成形管件幾何呎吋進行對比,穫得成形角度、半徑和直線段長度的最大相對誤差分彆為1.00%,5.51%和5.04%。上述誤差滿足多彎管件裝配精度要求,證明所提齣的成形精度控製方法是可靠的。
목적:연구획득기우다지표적고강 TA18태관정체다만관건성형정도공제적방법。방법재획득고강 TA18태관수공만곡비선성회탄화신장규률적기출상,연구회탄각、회탄반경적보상방법화신장공제방법,기차장획득적성형정도공제방법진행다만모의응용험증。결과대우회탄각화회탄반경,채용선보상회탄반경재보상회탄각적량수평순서공제방법;대우만곡신장,채용예선감소관재하료척촌화개변만두위치래공제회탄후직선단장도적공제방법。결론응용상술공제방법,장다만모의결과여예성형관건궤하척촌진행대비,획득성형각도、반경화직선단장도적최대상대오차분별위1.00%,5.51%화5.04%。상술오차만족다만관건장배정도요구,증명소제출적성형정도공제방법시가고적。
Objective To obtain the multi-index constrained precision control strategies of high strength TA18 titanium alloy tube in multi-bending. Methods Based on the understanding of nonlinear springback and elongation characterizations of high strength TA18 titanium alloy tube in NC bending, the control strategies of springback angle, springback radius and bending elongation were firstly studied, and then the NC bending precision control strategies were verified by the multi-bending case. Results For angular and radial springback, a two level iterative springback compensation methodology was a-dopted. For bending elongation, a method that controls the length of straight portion by cutting the feed length in advance was proposed. Conclusion Appling these methods, the comparisons between simulated results and pre-designed tube were made. The maximum relative errors of forming angle, radius and length of straight portion were 1. 00% , 5. 51% , and 5. 04% respectively. These errors were lower than the tolerance required by tube subsequent assemble, which indicated that the forming precision control strategies were reliable.