北京科技大学学报
北京科技大學學報
북경과기대학학보
JOURNAL OF UNIVERSITY OF SCIENCE AND TECHNOLOGY BEIJING
2014年
9期
1136-1142
,共7页
熊立新%罗周全%罗贞焱%齐飞翔
熊立新%囉週全%囉貞焱%齊飛翔
웅립신%라주전%라정염%제비상
采空区%拼接%精简%多点扫描%点云数据
採空區%拼接%精簡%多點掃描%點雲數據
채공구%병접%정간%다점소묘%점운수거
goaf%merging%compression%multipoint scan%point cloud data
针对复杂采空区激光探测中存在探测“盲区”和点云数据分布不均的问题,研究激光多点扫描和点云数据拼接与精简方法.通过多点探测避免了单次探测“盲区”,加密了数据稀疏区.提出了基于公共坐标和最小二乘法的靶标矩阵转换方法,实现了多点探测点云的拼接.统计了点云密集区的分布规律;对密集散乱点云,提出了沿 y 轴方向分层剖分,层内数据以 x和 z 坐标极值分区,区内每点以 x 值排序后依步长筛选的精简算法.大型贯通采空区验证表明:基于最小二乘法的拼接算法最优,误差范围在0.1 mm 左右;数据精简率为15%~25%,确保了边界三维信息的完整性.
針對複雜採空區激光探測中存在探測“盲區”和點雲數據分佈不均的問題,研究激光多點掃描和點雲數據拼接與精簡方法.通過多點探測避免瞭單次探測“盲區”,加密瞭數據稀疏區.提齣瞭基于公共坐標和最小二乘法的靶標矩陣轉換方法,實現瞭多點探測點雲的拼接.統計瞭點雲密集區的分佈規律;對密集散亂點雲,提齣瞭沿 y 軸方嚮分層剖分,層內數據以 x和 z 坐標極值分區,區內每點以 x 值排序後依步長篩選的精簡算法.大型貫通採空區驗證錶明:基于最小二乘法的拼接算法最優,誤差範圍在0.1 mm 左右;數據精簡率為15%~25%,確保瞭邊界三維信息的完整性.
침대복잡채공구격광탐측중존재탐측“맹구”화점운수거분포불균적문제,연구격광다점소묘화점운수거병접여정간방법.통과다점탐측피면료단차탐측“맹구”,가밀료수거희소구.제출료기우공공좌표화최소이승법적파표구진전환방법,실현료다점탐측점운적병접.통계료점운밀집구적분포규률;대밀집산란점운,제출료연 y 축방향분층부분,층내수거이 x화 z 좌표겁치분구,구내매점이 x 치배서후의보장사선적정간산법.대형관통채공구험증표명:기우최소이승법적병접산법최우,오차범위재0.1 mm 좌우;수거정간솔위15%~25%,학보료변계삼유신식적완정성.
In view of the problems of ‘blind spots’ in complicated goaf detecting by using laser scanning and point cloud density distribution inhomogeneity, this article introduced multi-point laser scan and point cloud merging and compression. Multi-point scan in complicated goaf avoided ‘blind spots’ and densified sparse point cloud regions. The merging algorithm of point cloud data was put forward based on a common coordinate system and the least-squares principle to solve the target transformation matrix. After the distri-bution rule of point cloud concentration areas was analyzed, the scattered point cloud compression algorithm was proposed, in which the point cloud was divided into portions along the y direction firstly, then intralayer data were divided by the extreme values of x and z, and each point was sorted on the x value and screened on step δ. Error analysis of an instance of large versed goaf shows that the merging algorithm based on the least-squares principle will achieve high precision with an error range of about 0. 1 mm. The compres-sion algorithm can achieve a compression proportion of 15% to 25% and ensure the integrity of 3D boundary information at the same time.