农业工程学报
農業工程學報
농업공정학보
2014年
17期
183-191
,共9页
李斌兵%黄磊%冯林%马鼎
李斌兵%黃磊%馮林%馬鼎
리빈병%황뢰%풍림%마정
泥沙%侵蚀%不确定性分析%黄土沟壑区%点云%净负载量%数字高程模型差值
泥沙%侵蝕%不確定性分析%黃土溝壑區%點雲%淨負載量%數字高程模型差值
니사%침식%불학정성분석%황토구학구%점운%정부재량%수자고정모형차치
sediments%erosion%uncertainty analysis%the hilly-gully region of loess plateau%point cloud data%sediment budgets%digital elevation model of difference
通过对不同期数字高程模型(DEM,digital elevation model)的相减计算,可以获得侵蚀和淤积的空间分布及泥沙负载估算值,为了度量泥沙负载量估算的不确定性,提高野外切沟泥沙负载量的估算精度,该文提出了一种修正泥沙负载量估算值的方法,通过对大样本点云数据的统计抽样,得到了对应 DEM 差值结果不同坡度位置的误差δz,使得DEM误差具有一定的空间可变性,根据δz和DEM差值结果,通过t检验,建立了侵蚀和沉积发生的先验概率;再以侵蚀和沉积发生的空间相关性为基础,建立了一个由权重因子构成的概率修正滤波器,用来计算侵蚀和沉积发生的条件概率,最后,通过Bayesian推理方法,计算侵蚀和沉积发生的后验概率,用来更新和修正泥沙负载量估算值。经在甘肃天水桥子沟切沟应用,使用该文方法计算得到的侵蚀/沉积变化量相比未经处理的DEM差值结果和用Brasington和Lane方法修正的DEM差值结果估算的净负载量,在95%的置信水平下分别下降了13.13%和7.53%,经与天水水保站实际径流泥沙观测资料对照,与实际观测净负载量相差2%;该文同时还探讨了切沟坡度、点云点密度、地表粗糙度与侵蚀/沉积不确定性的关系,研究结果为提高黄土沟壑区侵蚀沟侵蚀量的估算精度提供了参考依据。
通過對不同期數字高程模型(DEM,digital elevation model)的相減計算,可以穫得侵蝕和淤積的空間分佈及泥沙負載估算值,為瞭度量泥沙負載量估算的不確定性,提高野外切溝泥沙負載量的估算精度,該文提齣瞭一種脩正泥沙負載量估算值的方法,通過對大樣本點雲數據的統計抽樣,得到瞭對應 DEM 差值結果不同坡度位置的誤差δz,使得DEM誤差具有一定的空間可變性,根據δz和DEM差值結果,通過t檢驗,建立瞭侵蝕和沉積髮生的先驗概率;再以侵蝕和沉積髮生的空間相關性為基礎,建立瞭一箇由權重因子構成的概率脩正濾波器,用來計算侵蝕和沉積髮生的條件概率,最後,通過Bayesian推理方法,計算侵蝕和沉積髮生的後驗概率,用來更新和脩正泥沙負載量估算值。經在甘肅天水橋子溝切溝應用,使用該文方法計算得到的侵蝕/沉積變化量相比未經處理的DEM差值結果和用Brasington和Lane方法脩正的DEM差值結果估算的淨負載量,在95%的置信水平下分彆下降瞭13.13%和7.53%,經與天水水保站實際徑流泥沙觀測資料對照,與實際觀測淨負載量相差2%;該文同時還探討瞭切溝坡度、點雲點密度、地錶粗糙度與侵蝕/沉積不確定性的關繫,研究結果為提高黃土溝壑區侵蝕溝侵蝕量的估算精度提供瞭參攷依據。
통과대불동기수자고정모형(DEM,digital elevation model)적상감계산,가이획득침식화어적적공간분포급니사부재고산치,위료도량니사부재량고산적불학정성,제고야외절구니사부재량적고산정도,해문제출료일충수정니사부재량고산치적방법,통과대대양본점운수거적통계추양,득도료대응 DEM 차치결과불동파도위치적오차δz,사득DEM오차구유일정적공간가변성,근거δz화DEM차치결과,통과t검험,건립료침식화침적발생적선험개솔;재이침식화침적발생적공간상관성위기출,건립료일개유권중인자구성적개솔수정려파기,용래계산침식화침적발생적조건개솔,최후,통과Bayesian추리방법,계산침식화침적발생적후험개솔,용래경신화수정니사부재량고산치。경재감숙천수교자구절구응용,사용해문방법계산득도적침식/침적변화량상비미경처리적DEM차치결과화용Brasington화Lane방법수정적DEM차치결과고산적정부재량,재95%적치신수평하분별하강료13.13%화7.53%,경여천수수보참실제경류니사관측자료대조,여실제관측정부재량상차2%;해문동시환탐토료절구파도、점운점밀도、지표조조도여침식/침적불학정성적관계,연구결과위제고황토구학구침식구침식량적고산정도제공료삼고의거。
Gully erosion has been recognized as one of the important processes in sediment production and land degradation in a wide range of environments. Soil loss rates by gully erosion represent from minimal 10%up to 94%of total sediment yield caused by water erosion. The recent advances in LIDAR provide the rapid acquisition method of topographic data at spatial resolutions. These advances make monitoring gully geomorphic changes and estimating sediment budgets through DEM (digital elevation model) differences, a tractable, affordable approach for monitoring applications in both research and practice.In order to reduce the uncertainty of the estimated gully morphological sediment loading produced by the DEM difference, a new method was presented in this paper, which allowed for more robust estimation of DEM uncertainties and propagated this forward to the estimation of morphological sediment loading. The method allowed for probabilistic representation of uncertainty and thresholding of the sediment loading at a user-specified confidence interval. 1000 times sampling were carried out by Matlab through the Bootstrap method to achieve δz which was the error between the observed and calculated elevations, as the individual error, then the individual errors in DEMs can be propagated intoδcutfil as a priori probability. On this basis, the difference between the initial detection threshold values of DEM for preliminary screening was determined;then, the new approach modified this estimate on the spatial correlation of erosion and deposition units, which was based on a convolution filter creating a moving window of 5 × 5 cell size of DEM for calculating erosion/deposition conditional probability; finally, according to the prior probability, conditional probability and confidence level (95%), the minimum detection threshold value was established for the final corrected morphological sediment loading. Compared with those resulted from DEM difference without correction and from DEM difference corrected by Brasington and Lane method, the variable quantity of erosion and deposition estimated by this new method applied in typical gully in Qiaozigou, Tianshui, Gansu Province, decreased by 13.13%and 7.53%respectively at a 95%confidence interval. Moreover, the estimation value was only about 2%error with the observed sediment loading provided by the Water Conservation Station. Besides, the relations between the gully slope, point cloud density, surface roughness and the uncertainty of erosion/deposition were as followed:the greater the gully bank’s slope, the greater the uncertainty of erosion/deposition;when the point density was in the range of 0~140 points/m2, the erosion/deposition showed a decreasing trend with the point density increasing, while, when the point density was more than 140 points/m2, erosion/deposition density had little change;the greater the gully surface roughness, the greater the erosion/deposition uncertainty, the greater the slope of the gully bank. Tests show that the new method provides a scientific basis for the monitoring of the Loess gully erosion morphological change and accurate estimation of erosion.