实验流体力学
實驗流體力學
실험류체역학
JOURNAL OF EXPERIMENTS IN FLUID MECHANICS
2014年
5期
7-12
,共6页
振荡现象%自由落体%下落速度
振盪現象%自由落體%下落速度
진탕현상%자유락체%하락속도
oscillating phenomenon%free falling bodies%fall velocities
为了研究自由下落物体的速度震荡现象,基于相对运动原理,应用立式风洞研究了5种典型形状的物体在上升气流中的悬浮特性。模型包括球形、正方体、长方体、短圆柱体和碟形等刚体。风速的平均值由皮托管风速计测得,同时通过CCD相机记录了物体达到悬浮状态前后的运动状态并进行了定量分析。实验结果表明:对称性较好的物体具有较稳定的悬浮特性;而非对称性物体,由于不同姿态角下的阻力系数和扭矩系数不同,很难维持一个稳定的悬浮状态,将伴随姿态的变化不断发生振荡运动。从而说明,空间形体对称的物体自由下落过程中可以达到较稳定的最大下落速度,而形体非对称的物体则难以达到确定的最大速度。除实验研究之外,还采用动态网格数值模拟手段计算了二维方形模型下落过程中的姿态角及运动轨迹,同时得到模型不同姿态角下的阻力和扭矩,计算结果也进一步解释了物体下落速度会发生振荡的原因。
為瞭研究自由下落物體的速度震盪現象,基于相對運動原理,應用立式風洞研究瞭5種典型形狀的物體在上升氣流中的懸浮特性。模型包括毬形、正方體、長方體、短圓柱體和碟形等剛體。風速的平均值由皮託管風速計測得,同時通過CCD相機記錄瞭物體達到懸浮狀態前後的運動狀態併進行瞭定量分析。實驗結果錶明:對稱性較好的物體具有較穩定的懸浮特性;而非對稱性物體,由于不同姿態角下的阻力繫數和扭矩繫數不同,很難維持一箇穩定的懸浮狀態,將伴隨姿態的變化不斷髮生振盪運動。從而說明,空間形體對稱的物體自由下落過程中可以達到較穩定的最大下落速度,而形體非對稱的物體則難以達到確定的最大速度。除實驗研究之外,還採用動態網格數值模擬手段計算瞭二維方形模型下落過程中的姿態角及運動軌跡,同時得到模型不同姿態角下的阻力和扭矩,計算結果也進一步解釋瞭物體下落速度會髮生振盪的原因。
위료연구자유하락물체적속도진탕현상,기우상대운동원리,응용입식풍동연구료5충전형형상적물체재상승기류중적현부특성。모형포괄구형、정방체、장방체、단원주체화설형등강체。풍속적평균치유피탁관풍속계측득,동시통과CCD상궤기록료물체체도현부상태전후적운동상태병진행료정량분석。실험결과표명:대칭성교호적물체구유교은정적현부특성;이비대칭성물체,유우불동자태각하적조력계수화뉴구계수불동,흔난유지일개은정적현부상태,장반수자태적변화불단발생진탕운동。종이설명,공간형체대칭적물체자유하락과정중가이체도교은정적최대하락속도,이형체비대칭적물체칙난이체도학정적최대속도。제실험연구지외,환채용동태망격수치모의수단계산료이유방형모형하락과정중적자태각급운동궤적,동시득도모형불동자태각하적조력화뉴구,계산결과야진일보해석료물체하락속도회발생진탕적원인。
In order to study the falling velocity oscillating phenomenon,the characteristic of suspending obj ects of five typical rigid bodies inside up-flow were experimentally studied by using a wind tunnel with vertical test section based on the principle of relative motion.The rigid objects include ball,cube,cuboid,cylinder and disc.The mean wind velocities inside the wind tunnel test section were measured by Pitot-Tube and the dynamic status of the obj ects before and after its suspension were recorded by CCD camera and quantitatively analyzed.The experimental re-sults show that the obj ects of symmetrical bodies can maintain a comparatively stable suspension state,while those of asymmetrical bodies continuously oscillate with changing attitude angle due to different drag coefficient and pitch coefficient on the asymmetrical objects.In other words,the symmetrical objects can reach a stable maximum falling speed during free fall,while the asym-metrical bodies are hard to reach expected maximum falling speed.Besides experimental study,a 2-D Computational Fluid Dynamics (CFD)model combined with dynamic mesh technology was also performed,from which the drag coefficient,pitch coefficient and the trajectory of the square inside the flow were obtained.The simulation results can be used to quantitatively explain the falling velocity oscillation of the asymmetrical free falling bodies.