西南交通大学学报
西南交通大學學報
서남교통대학학보
JOURNAL OF SOUTHWEST JIAOTONG UNIVERSITY
2014年
5期
913-919
,共7页
图像处理%图像分割%模式识别%类间方差%类内方差%边缘概率分布
圖像處理%圖像分割%模式識彆%類間方差%類內方差%邊緣概率分佈
도상처리%도상분할%모식식별%류간방차%류내방차%변연개솔분포
image processing%image segmentation%pattern recognition%inter-class variance%intra-class variance%probability distributions
为了提高二维阈值分割法的处理速度,提出二维类间方差最大法的快速实现方法。首先,将二维最佳阈值(s*,t*)的求解拆分成两个一维最佳阈值s*和t*的求解,并引入类内距离的定义,提出新的最佳阈值判别式。其次,将原二维直方图分成M ×M个区域,合并每个区域为一点,并构建新的二维直方图,在其上应用本文改进的阈值判别式D(s*,t*)求解,得到分割阈值所在的区域编号。最后,在该区域内再次使用D(s*,t*)求解得到原始图像的最佳分割阈值。理论分析及针对不同信噪比的多幅图像的实验结果表明,本文方法的分割错误率低于原始二维Otsu法,且将原算法的时间复杂度由O(L4)降为O(L1/2),空间复杂度由S(L2)降为S(2L)。
為瞭提高二維閾值分割法的處理速度,提齣二維類間方差最大法的快速實現方法。首先,將二維最佳閾值(s*,t*)的求解拆分成兩箇一維最佳閾值s*和t*的求解,併引入類內距離的定義,提齣新的最佳閾值判彆式。其次,將原二維直方圖分成M ×M箇區域,閤併每箇區域為一點,併構建新的二維直方圖,在其上應用本文改進的閾值判彆式D(s*,t*)求解,得到分割閾值所在的區域編號。最後,在該區域內再次使用D(s*,t*)求解得到原始圖像的最佳分割閾值。理論分析及針對不同信譟比的多幅圖像的實驗結果錶明,本文方法的分割錯誤率低于原始二維Otsu法,且將原算法的時間複雜度由O(L4)降為O(L1/2),空間複雜度由S(L2)降為S(2L)。
위료제고이유역치분할법적처리속도,제출이유류간방차최대법적쾌속실현방법。수선,장이유최가역치(s*,t*)적구해탁분성량개일유최가역치s*화t*적구해,병인입류내거리적정의,제출신적최가역치판별식。기차,장원이유직방도분성M ×M개구역,합병매개구역위일점,병구건신적이유직방도,재기상응용본문개진적역치판별식D(s*,t*)구해,득도분할역치소재적구역편호。최후,재해구역내재차사용D(s*,t*)구해득도원시도상적최가분할역치。이론분석급침대불동신조비적다폭도상적실험결과표명,본문방법적분할착오솔저우원시이유Otsu법,차장원산법적시간복잡도유O(L4)강위O(L1/2),공간복잡도유S(L2)강위S(2L)。
In order to shorten the running time of 2D threshold segmentation algorithm,a fast implementation of 2D Otsu was developed. First,a two-dimensional optimal threshold (s*,t*)was split into two one-dimensional optimal thresholds,s* and t*. The intra-class variance was defined to propose a new optimal discriminant D(s*,t*). Then the original 2D histogram was divided into M × M regions,and each region was combined as a point to form a new 2D histogram. Based on this new 2D histogram,the discriminant D(s*,t*)was solved to determine the region that corresponds to the optimal threshold,and last the optimal threshold was calculated using D(s*,t*). The theoretical analysis and experimental results of some images with different signal-to-noise ratios (SNRs ) show that the segmentation error rate of the proposed algorithm is lower than the original two-dimensional Otsu method. The time complexity of the proposed method is reduced from O(L4 )to O(L1/2 ),and space complexity is reduced from S(L2 )to S(2L).