兰州理工大学学报
蘭州理工大學學報
란주리공대학학보
JOURNAL OF LANZHOU UNIVERSITY OF TECHNOLOGY
2014年
4期
150-154
,共5页
星形映照%螺形映照%零伦全纯映照
星形映照%螺形映照%零倫全純映照
성형영조%라형영조%령륜전순영조
starlike mappings%spiral-like mappings%null-homotopic holomorphic mappings
星形映照与螺形映照是多复变几何函数论中较早被研究的两种映照,在众多映照的性质研究中起着非常重要的作用.以复分析为主要研究工具,结合拓扑学中同伦的概念,提出复Hilbert空间单位球上解析同伦和零伦的概念,并得到零伦全纯映照的判别方法.同时从同伦的观点也得到星形映照和螺形映照的一些判别方法,这些判别方法与已知的一些结论是一致的.又复欧式空间为复无限维Hilbert空间的一个特例,因此所得结果对复欧式空间中的单位球也是成立的,推广一些已知的结论.
星形映照與螺形映照是多複變幾何函數論中較早被研究的兩種映照,在衆多映照的性質研究中起著非常重要的作用.以複分析為主要研究工具,結閤拓撲學中同倫的概唸,提齣複Hilbert空間單位毬上解析同倫和零倫的概唸,併得到零倫全純映照的判彆方法.同時從同倫的觀點也得到星形映照和螺形映照的一些判彆方法,這些判彆方法與已知的一些結論是一緻的.又複歐式空間為複無限維Hilbert空間的一箇特例,因此所得結果對複歐式空間中的單位毬也是成立的,推廣一些已知的結論.
성형영조여라형영조시다복변궤하함수론중교조피연구적량충영조,재음다영조적성질연구중기착비상중요적작용.이복분석위주요연구공구,결합탁복학중동륜적개념,제출복Hilbert공간단위구상해석동륜화령륜적개념,병득도령륜전순영조적판별방법.동시종동륜적관점야득도성형영조화라형영조적일사판별방법,저사판별방법여이지적일사결론시일치적.우복구식공간위복무한유Hilbert공간적일개특례,인차소득결과대복구식공간중적단위구야시성립적,추엄일사이지적결론.