中国光学
中國光學
중국광학
CHINESE JOURNAL OF OPTICS
2014年
5期
830-836
,共7页
光学检测%干涉仪%子孔径拼接算法%标记点中心
光學檢測%榦涉儀%子孔徑拼接算法%標記點中心
광학검측%간섭의%자공경병접산법%표기점중심
optical measurement%interferometer%subaperture stitching algorithm%marker center
子孔径拼接干涉仪中子孔径定位精度难以在大行程范围内得到保证,为此本文提出了基于提取标记点中心定位子孔径的拼接方法。以标记点的中心坐标为标记点坐标,根据标记点在两子孔径局部坐标系下的坐标计算两子孔径之间的坐标变换,将所有子孔径数据坐标变换到统一坐标系下,利用机械误差补偿算法拼接出全口径面形。在搭建的拼接检测系统上实现了外径468 mm的平面镜抛光过程和最终的全口径面形测量,加工过程中的测量结果为面形误差修正提供了准确的数据,保证了最终全口径面形误差RMS快速收敛到35 nm。实验证明,基于提取标记点中心的子孔径拼接检测能放宽对机械定位精度的要求,有效检测大口径光学元件面形。
子孔徑拼接榦涉儀中子孔徑定位精度難以在大行程範圍內得到保證,為此本文提齣瞭基于提取標記點中心定位子孔徑的拼接方法。以標記點的中心坐標為標記點坐標,根據標記點在兩子孔徑跼部坐標繫下的坐標計算兩子孔徑之間的坐標變換,將所有子孔徑數據坐標變換到統一坐標繫下,利用機械誤差補償算法拼接齣全口徑麵形。在搭建的拼接檢測繫統上實現瞭外徑468 mm的平麵鏡拋光過程和最終的全口徑麵形測量,加工過程中的測量結果為麵形誤差脩正提供瞭準確的數據,保證瞭最終全口徑麵形誤差RMS快速收斂到35 nm。實驗證明,基于提取標記點中心的子孔徑拼接檢測能放寬對機械定位精度的要求,有效檢測大口徑光學元件麵形。
자공경병접간섭의중자공경정위정도난이재대행정범위내득도보증,위차본문제출료기우제취표기점중심정위자공경적병접방법。이표기점적중심좌표위표기점좌표,근거표기점재량자공경국부좌표계하적좌표계산량자공경지간적좌표변환,장소유자공경수거좌표변환도통일좌표계하,이용궤계오차보상산법병접출전구경면형。재탑건적병접검측계통상실현료외경468 mm적평면경포광과정화최종적전구경면형측량,가공과정중적측량결과위면형오차수정제공료준학적수거,보증료최종전구경면형오차RMS쾌속수렴도35 nm。실험증명,기우제취표기점중심적자공경병접검측능방관대궤계정위정도적요구,유효검측대구경광학원건면형。
The stitching interferometer systems with larger relative movement will show a significantly lower po -sitioning accuracy of subapertures .As a consequence a stitching method based on detection of artificial circu-lar mark center to find the necessary translation between two neighborly subapertures is implemented .Firstly, we take coordinates of mark centers as the marks′coordinates by which the translation is computed .Then all the subaperture data are unified into the same reference by homogeneous coordinate transformation and the full aperture phase are stitched by using mechanical system error compensation algorithm .A subaperture stitching process for a 468 mm flat mirror was carried out including surface accuracy tests during the polishing .In this process, subaperture stitching test offered the surface data precisely for polishing , which ensured the surface error converged quickly to a final RMS of 35 nm.The experimental results show that the method relaxes the precision requirement for subaperture location and can get the full aperture phase for large optical element cor -rectly.