中国光学
中國光學
중국광학
CHINESE JOURNAL OF OPTICS
2014年
5期
779-785
,共7页
图像分割%航拍图像%区域信息
圖像分割%航拍圖像%區域信息
도상분할%항박도상%구역신식
image segmentation%aerial image%region information
提出一种利用区域信息的航拍图像分割模型。针对GAC模型和Chan-Vese模型存在的不足,提出一种符号压力函数,该符号压力函数可以有效地增大模型的作用范围。与Chan-Vese模型相比,新模型不受初始条件的限制,进一步增大了模型的作用范围。新模型利用了图像的区域信息,可以同时将目标的内外边界分割出来。在新模型中,水平集函数不必初始化为符号距离函数,节省了计算开销。与传统的基于水平集方法的模型相比,新模型不含曲率项,实现简单。实验结果表明,与GAC模型和Chan-Vese模型相比,新模型的分割精度高于3%,分割速度快6倍以上。
提齣一種利用區域信息的航拍圖像分割模型。針對GAC模型和Chan-Vese模型存在的不足,提齣一種符號壓力函數,該符號壓力函數可以有效地增大模型的作用範圍。與Chan-Vese模型相比,新模型不受初始條件的限製,進一步增大瞭模型的作用範圍。新模型利用瞭圖像的區域信息,可以同時將目標的內外邊界分割齣來。在新模型中,水平集函數不必初始化為符號距離函數,節省瞭計算開銷。與傳統的基于水平集方法的模型相比,新模型不含麯率項,實現簡單。實驗結果錶明,與GAC模型和Chan-Vese模型相比,新模型的分割精度高于3%,分割速度快6倍以上。
제출일충이용구역신식적항박도상분할모형。침대GAC모형화Chan-Vese모형존재적불족,제출일충부호압력함수,해부호압력함수가이유효지증대모형적작용범위。여Chan-Vese모형상비,신모형불수초시조건적한제,진일보증대료모형적작용범위。신모형이용료도상적구역신식,가이동시장목표적내외변계분할출래。재신모형중,수평집함수불필초시화위부호거리함수,절성료계산개소。여전통적기우수평집방법적모형상비,신모형불함곡솔항,실현간단。실험결과표명,여GAC모형화Chan-Vese모형상비,신모형적분할정도고우3%,분할속도쾌6배이상。
Image segmentation based on level set method is one of the most widely used methods in segmenta -tion domain .Due to a large field of view for aerial image , traditional methods usually can not obtain a global segmentation, and segmentation result is often very poor .In this paper, a new segmentation method with re-gion information for aerial image is proposed .First, a new signed press function is proposed to enhance the capture range , which also can obtain global segmentation result .Second , compared with Chan-Vese model , proposed model is not limited by initial condition , and can enhance the capture range further .Third, proposed model utilizes the region information of an image , which can automatically segment inside and outside of an object simultaneously .In the proposed model , level set function doesn′t need to be initialized to signed dis-tance function, which can reduce a lot of computation cost .Moreover, the proposed model has no curvature i-tem compared with traditional level set method , and is easy for numerical implementation .Experiment results demonstrate that proposed model has a higher accuracy of 3%, and 6 times faster than GAC model and Chan-Vese model .