中国光学
中國光學
중국광학
CHINESE JOURNAL OF OPTICS
2014年
5期
759-767
,共9页
郭巳秋%许廷发%王洪庆%张一舟%申子宜
郭巳鞦%許廷髮%王洪慶%張一舟%申子宜
곽사추%허정발%왕홍경%장일주%신자의
目标跟踪%粒子群优化%粒子进化率%惯性权重
目標跟蹤%粒子群優化%粒子進化率%慣性權重
목표근종%입자군우화%입자진화솔%관성권중
object tracking%particle swarm optimization%evolution rate of particle%inertia weight
针对粒子群优化算法应用在目标跟踪时,其惯性权重调节机制的局限性,提出了改进的粒子群优化目标跟踪方法。首先,对目标及粒子群算法中相应参数进行初始化;接着,引入粒子进化率的概念,对惯性权重调节机制进行改进,根据每代每个粒子的不同状态及时调整惯性权重;然后,在更新粒子的速度和位置的同时,更新个体最优解和全局最优解,进行下一次迭代;最后,比较粒子的适应度,选择相似性函数值最大的区域为目标。实验结果表明,该方法与使用自适应惯性权重调节机制的粒子群优化目标跟踪方法相比,减少了获取相同适应度所需的迭代次数,运算效率提高了42.9%。实现了目标在相似性函数出现“多峰”情况下的准确定位,对目标出现部分遮挡的情况具有很好的适应性。
針對粒子群優化算法應用在目標跟蹤時,其慣性權重調節機製的跼限性,提齣瞭改進的粒子群優化目標跟蹤方法。首先,對目標及粒子群算法中相應參數進行初始化;接著,引入粒子進化率的概唸,對慣性權重調節機製進行改進,根據每代每箇粒子的不同狀態及時調整慣性權重;然後,在更新粒子的速度和位置的同時,更新箇體最優解和全跼最優解,進行下一次迭代;最後,比較粒子的適應度,選擇相似性函數值最大的區域為目標。實驗結果錶明,該方法與使用自適應慣性權重調節機製的粒子群優化目標跟蹤方法相比,減少瞭穫取相同適應度所需的迭代次數,運算效率提高瞭42.9%。實現瞭目標在相似性函數齣現“多峰”情況下的準確定位,對目標齣現部分遮擋的情況具有很好的適應性。
침대입자군우화산법응용재목표근종시,기관성권중조절궤제적국한성,제출료개진적입자군우화목표근종방법。수선,대목표급입자군산법중상응삼수진행초시화;접착,인입입자진화솔적개념,대관성권중조절궤제진행개진,근거매대매개입자적불동상태급시조정관성권중;연후,재경신입자적속도화위치적동시,경신개체최우해화전국최우해,진행하일차질대;최후,비교입자적괄응도,선택상사성함수치최대적구역위목표。실험결과표명,해방법여사용자괄응관성권중조절궤제적입자군우화목표근종방법상비,감소료획취상동괄응도소수적질대차수,운산효솔제고료42.9%。실현료목표재상사성함수출현“다봉”정황하적준학정위,대목표출현부분차당적정황구유흔호적괄응성。
To overcome the limitations of inertia weight adjustment mechanism when the particle swarm optimi -zation algorithm is applied to object tracking , an improved particle swarm optimization object tracking algo-rithm is proposed.Firstly, the object and the parameters in particle swarm optimization algorithm are initial-ized.Secondly, the inertia weight adjustment mechanism is improved by using the evolution rate of particle , and the inertia weight is achieved by taking the conditions of different particles in each generation into consid -eration .Then the speed , the position , the individual optimum and the global optimum of the particles are up-dated simultaneously while the next iteration is proceeding .Finally, the area which has the largest similarity function value is defined as the object by comparing the fitness value of each particle with the others .Experi-mental results indicate that the method reduces the iterations to obtain the same fitness value , and improves the operation efficiency by 42.9% in comparison with the particle swarm optimization object tracking method which uses self-adapted inertia weight adjustment mechanism .The accurate positioning of the object is a-chieved in the case of the similarity function presenting “multimodal”, and the method is well adapted to the situation when partial occlusion occurs in object tracking .