磁共振成像
磁共振成像
자공진성상
CHINESE JOURNAL OF MAGNETIC RESONANCE IMAGING
2014年
5期
372-377
,共6页
回波平面成像%螺旋成像%脑%认知
迴波平麵成像%螺鏇成像%腦%認知
회파평면성상%라선성상%뇌%인지
Echo-planar imaging%Spiral imaging%Brain%Cognition
目前,人脑认知功能研究广泛使用平面回波成像(EPI)来快速扫描全脑。然而,EPI采用笛卡尔轨迹覆盖k空间,其读出持续时间较长,对运动的敏感性高。该文介绍另外一种快速成像技术--螺旋成像(spiral imaging)。Spiral用阿基米德或类似轨迹覆盖k空间,其读出持续时间短,对运动的敏感性低。Spiral有望突破EPI在脑认知功能研究中的瓶颈,具体表现为内、外螺旋(spiral-in/out)能够在减少磁敏感性脑区信号衰减的同时增加磁敏感性均匀脑区的信噪比,变化密度螺旋(variable density spiral)可以在保持信噪比的条件下实现单次激发Spiral的高时空分辨扫描。
目前,人腦認知功能研究廣汎使用平麵迴波成像(EPI)來快速掃描全腦。然而,EPI採用笛卡爾軌跡覆蓋k空間,其讀齣持續時間較長,對運動的敏感性高。該文介紹另外一種快速成像技術--螺鏇成像(spiral imaging)。Spiral用阿基米德或類似軌跡覆蓋k空間,其讀齣持續時間短,對運動的敏感性低。Spiral有望突破EPI在腦認知功能研究中的瓶頸,具體錶現為內、外螺鏇(spiral-in/out)能夠在減少磁敏感性腦區信號衰減的同時增加磁敏感性均勻腦區的信譟比,變化密度螺鏇(variable density spiral)可以在保持信譟比的條件下實現單次激髮Spiral的高時空分辨掃描。
목전,인뇌인지공능연구엄범사용평면회파성상(EPI)래쾌속소묘전뇌。연이,EPI채용적잡이궤적복개k공간,기독출지속시간교장,대운동적민감성고。해문개소령외일충쾌속성상기술--라선성상(spiral imaging)。Spiral용아기미덕혹유사궤적복개k공간,기독출지속시간단,대운동적민감성저。Spiral유망돌파EPI재뇌인지공능연구중적병경,구체표현위내、외라선(spiral-in/out)능구재감소자민감성뇌구신호쇠감적동시증가자민감성균균뇌구적신조비,변화밀도라선(variable density spiral)가이재보지신조비적조건하실현단차격발Spiral적고시공분변소묘。
Human brain cognition has been mostly investigated with single-short echo-planar imaging (EPI) in order to cover the whole brain within a few seconds. However, the duration of EPI readout is relatively long because it utilizes a Cartesian trajectory to cover k-space and only Gx gradient contributes to the trajectory. The longer duration can result in substantial artifacts from off-resonance and gradient imperfections. Moreover, EPI is sensitive to motion because the ifrst-and higher order moments of the gradient waveforms near the k-space origin is large. Here we present another fast imaging technique, namely spiral imaging for the study of human brain cognition. Spiral samples an Archimedean or similar trajectory to cover k-space that either begins at the k-space center and spirals to the edge (spiral-out), or begins at the edge and ends at the origin (spiral-in). The readout duration of spiral is shorter than that of EPI due to its efifcient use of both Gx and Gy gradients to drive the trajectory, and its sensitivity to motion is lower since the gradient moments are low at the center of k-space and increase slowly with time. Spiral is a promising imaging technique in terms of breaking the bottle neck in EPI study of human brain cognition. Speciifcally, the use of spiral-in/out trajectories in which a spiral-in readout is followed by a spiral-out can simultaneously increase the SNR in uniform brain regions as well as to reduce the signal dropout in regions compromised by susceptibility-induced ifeld gradients. Furthermore, a variable-density spiral, which consists of an Archimedean spiral from the space origin to a user-speciifed k-space radius and a undersampled variable density spiral from the speciifed points to the maximum radius, can achieve high temporal and spatial resolution fMRI without loss of SNR using single-short.