计算机与应用化学
計算機與應用化學
계산궤여응용화학
COMPUTERS AND APPLIED CHEMISTRY
2014年
8期
1010-1014
,共5页
诸林%范峻铭%李璐伶%白聪
諸林%範峻銘%李璐伶%白聰
제림%범준명%리로령%백총
甲烷%热力学过程%制氢%化学链燃烧%Aspen Plus模拟软件%CaO吸收剂
甲烷%熱力學過程%製氫%化學鏈燃燒%Aspen Plus模擬軟件%CaO吸收劑
갑완%열역학과정%제경%화학련연소%Aspen Plus모의연건%CaO흡수제
methane%thermodynamic process%hydrogen production%chemical looping combustion%Aspen Plus simulation software%CaO absorbing agent
为在重整气中得到高纯H2和降低尾气CO2分离成本,建立了基于CaO引导的甲烷蒸汽重整化学链燃烧制氢系统,该系统在重整反应器中加入CaO吸收剂,用以吸收重整器内的CO2,提高重整气中H2浓度,形成的CaCO3固体在煅烧器中受热分解重新生成CaO。利用Aspen Plus进行了过程模拟及热力学分析,并研究主要参数对系统性能的影响,得到优化的操作条件为:CaO循环量/CH4比为0.5,CH4(燃料)/CH4比为0.35,NiO循环量/CH4比为1.4。CaO循环量/CH4比从0变化到0.5时,重整气中H2浓度从0.60增长到0.99;CH4(燃料)/CH4比在0.25~0.45区间变化时,重整气中H2浓度从0.86提高到0.99,产气量增加;NiO循环量/CH4比在1~1.6区间变化时,重整气中H2浓度从0.88增长到0.99,系统有效能效率变化较小。
為在重整氣中得到高純H2和降低尾氣CO2分離成本,建立瞭基于CaO引導的甲烷蒸汽重整化學鏈燃燒製氫繫統,該繫統在重整反應器中加入CaO吸收劑,用以吸收重整器內的CO2,提高重整氣中H2濃度,形成的CaCO3固體在煅燒器中受熱分解重新生成CaO。利用Aspen Plus進行瞭過程模擬及熱力學分析,併研究主要參數對繫統性能的影響,得到優化的操作條件為:CaO循環量/CH4比為0.5,CH4(燃料)/CH4比為0.35,NiO循環量/CH4比為1.4。CaO循環量/CH4比從0變化到0.5時,重整氣中H2濃度從0.60增長到0.99;CH4(燃料)/CH4比在0.25~0.45區間變化時,重整氣中H2濃度從0.86提高到0.99,產氣量增加;NiO循環量/CH4比在1~1.6區間變化時,重整氣中H2濃度從0.88增長到0.99,繫統有效能效率變化較小。
위재중정기중득도고순H2화강저미기CO2분리성본,건립료기우CaO인도적갑완증기중정화학련연소제경계통,해계통재중정반응기중가입CaO흡수제,용이흡수중정기내적CO2,제고중정기중H2농도,형성적CaCO3고체재단소기중수열분해중신생성CaO。이용Aspen Plus진행료과정모의급열역학분석,병연구주요삼수대계통성능적영향,득도우화적조작조건위:CaO순배량/CH4비위0.5,CH4(연료)/CH4비위0.35,NiO순배량/CH4비위1.4。CaO순배량/CH4비종0변화도0.5시,중정기중H2농도종0.60증장도0.99;CH4(연료)/CH4비재0.25~0.45구간변화시,중정기중H2농도종0.86제고도0.99,산기량증가;NiO순배량/CH4비재1~1.6구간변화시,중정기중H2농도종0.88증장도0.99,계통유효능효솔변화교소。
To produce high purity of hydrogen in reformed gas and to reduce the investment of the CO2 separation unit in the flue gas handing process, a novel system of hydrogen production from CaO enhanced methane steam reforming based on chemical looping combustion is proposed. In this work, the CaO absorbing agent is introduced to the reforming reactor for absorbing CO2 to promote the purity of H2 in reformed gas. The CaO solid regenerates by decomposing CaCO3 in calcinator. The Aspen plus simulation software was conducted to simulate and analyze this system. The effects of key parameters on this system performance were also studied further. The optimized operating conditions, as circulation of CaO/CH4 ratio, CH4 (fuel)/CH4 ratio, circulation of NiO/CH4 ratio, were 0.5, 0.35 and 1.4, respectively. When circulation of CaO/CH4 ratio was in the range of 0~0.5, the H2 concentration in reformed gas increased from 0.60 to 0.99. When the CH4 (fuel)/CH4 ratio was in the range of 0.25~0.45, the hydrogen concentration in reformed gas raised from 0.86 to 0.99, with corresponding increasing the gas yield ratio. The hydrogen concentration in reformed gas increased from 0.88 to 0.99 over the circulation of NiO/CH4 ratio range of 1~1.6, and with relatively moderate change in system exergy efficiency.