高师理科学刊
高師理科學刊
고사이과학간
JOURNAL OF SCIENCE OF TEACHERS' COLLEGE AND UNIVERSITY
2014年
5期
45-49,50
,共6页
极坐标系%矩阵%数学分量%物理分量
極坐標繫%矩陣%數學分量%物理分量
겁좌표계%구진%수학분량%물리분량
polar coordinate%matrix%mathematical component%physical component
用矩阵的方法表示协变、逆变极坐标系及相互转化关系和协变、逆变极坐标系与笛卡尔坐标系的转换关系,称为极坐标系的矩阵方法。利用该方法给出了质点运动学和质点动力学上常用物理量在极坐标系下的具体形式及其与在笛卡尔坐标系下具体形式的转换,并给出相应算例。
用矩陣的方法錶示協變、逆變極坐標繫及相互轉化關繫和協變、逆變極坐標繫與笛卡爾坐標繫的轉換關繫,稱為極坐標繫的矩陣方法。利用該方法給齣瞭質點運動學和質點動力學上常用物理量在極坐標繫下的具體形式及其與在笛卡爾坐標繫下具體形式的轉換,併給齣相應算例。
용구진적방법표시협변、역변겁좌표계급상호전화관계화협변、역변겁좌표계여적잡이좌표계적전환관계,칭위겁좌표계적구진방법。이용해방법급출료질점운동학화질점동역학상상용물리량재겁좌표계하적구체형식급기여재적잡이좌표계하구체형식적전환,병급출상응산례。
To show the conversion relationship between covariant polar coordinates and inverse polar coordinates as well as the conversion relationship between the two systems and descartes coordinates by using matrix is called polar coordinates matrix method.By using this method,obtained the specific forms in polar coordinates of frequently-used physical quantity of the particle kinematics and particle dynamics along with the conversion relationship of its specific forms in descartes coordinates,and gave the corresponding numerical example.