中国电机工程学报
中國電機工程學報
중국전궤공정학보
ZHONGGUO DIANJI GONGCHENG XUEBAO
2014年
25期
4385-4394
,共10页
陈国栋%朱淼%蔡旭%李睿%宋晋峰%周悦
陳國棟%硃淼%蔡旭%李睿%宋晉峰%週悅
진국동%주묘%채욱%리예%송진봉%주열
动态电压恢复器%最小方差滤波器%对称分量%软件锁相环%检测算法
動態電壓恢複器%最小方差濾波器%對稱分量%軟件鎖相環%檢測算法
동태전압회복기%최소방차려파기%대칭분량%연건쇄상배%검측산법
dynamic voltage restorer%least error squares filter%symmetrical components%software phase locked-loop%detection algorithm
动态电压恢复器(dynamic voltage restorer,DVR)的响应速度是衡量DVR特性的重要指标,锁相环和电压跌落检测算法则是决定其响应速度的2个关键因素,而电网电压畸变、跌落过程中发生的相位跳变和电压不平衡制约着锁相环和检测算法的快速性。该文结合最小方差(least error squares,LES)滤波器和改进对称分量法设计了新的软件锁相环和电压跌落检测算法,对这2种方法进行详细的理论推导,阐明各频次的正负序分量解耦的机理。在 Matlab/ Simulink中搭建仿真模型,与传统锁相环方法和电压跌落检测算法进行对比分析。最后,在电压跌落平台进行工业样机验证,结果表明所提方法可行有效,且具有较高的响应速度。
動態電壓恢複器(dynamic voltage restorer,DVR)的響應速度是衡量DVR特性的重要指標,鎖相環和電壓跌落檢測算法則是決定其響應速度的2箇關鍵因素,而電網電壓畸變、跌落過程中髮生的相位跳變和電壓不平衡製約著鎖相環和檢測算法的快速性。該文結閤最小方差(least error squares,LES)濾波器和改進對稱分量法設計瞭新的軟件鎖相環和電壓跌落檢測算法,對這2種方法進行詳細的理論推導,闡明各頻次的正負序分量解耦的機理。在 Matlab/ Simulink中搭建倣真模型,與傳統鎖相環方法和電壓跌落檢測算法進行對比分析。最後,在電壓跌落平檯進行工業樣機驗證,結果錶明所提方法可行有效,且具有較高的響應速度。
동태전압회복기(dynamic voltage restorer,DVR)적향응속도시형량DVR특성적중요지표,쇄상배화전압질락검측산법칙시결정기향응속도적2개관건인소,이전망전압기변、질락과정중발생적상위도변화전압불평형제약착쇄상배화검측산법적쾌속성。해문결합최소방차(least error squares,LES)려파기화개진대칭분량법설계료신적연건쇄상배화전압질락검측산법,대저2충방법진행상세적이론추도,천명각빈차적정부서분량해우적궤리。재 Matlab/ Simulink중탑건방진모형,여전통쇄상배방법화전압질락검측산법진행대비분석。최후,재전압질락평태진행공업양궤험증,결과표명소제방법가행유효,차구유교고적향응속도。
ABSTRACT:On the engineering application of a dynamic voltage restorer (DVR), the response time is a key factor to judge the performance of the DVR, which is depended on the software phase locked-loop (SPLL) and the voltage sag detection algorithm. Phase jump, unbalance and harmonic accompanied with the voltage sag usually impact the dynamic response of the SPLL and the voltage sag detection. The paper proposed a new algorithm based on the combination of the least error squares (LES) filter and improved symmetrical components method, then the detailed procedure was presented, and the crossing-decoupling frequency-domain of positive and negative components was analyzed.To verify the effectiveness, a DVR simulation model had been built in Matlab/Simulink and a series of comparison and analysis had been carried out. Finally, a 10 kV/2 MVA prototype was tested on a voltage drop generator platform. The improved response time and validity are demonstrated by experimental results with the comparison of traditional methods.