中国电机工程学报
中國電機工程學報
중국전궤공정학보
ZHONGGUO DIANJI GONGCHENG XUEBAO
2014年
27期
4654-4664
,共11页
刘英培%栗然%梁海平
劉英培%慄然%樑海平
류영배%률연%량해평
永磁同步电机%直接转矩控制%最小二乘支持向量机回归%自抗扰控制
永磁同步電機%直接轉矩控製%最小二乘支持嚮量機迴歸%自抗擾控製
영자동보전궤%직접전구공제%최소이승지지향량궤회귀%자항우공제
permanent magnet synchronous motor (PMSM)%direct torque control (DTC)%least squares support vector machines (LSSVM) regression%active-disturbance rejection control (ADRC)
针对传统PI调节器的缺陷,提出一种基于最小二乘支持向量机(least squares support vector machine,LSSVM)优化自抗扰控制器(active-disturbance rejection control, ADRC)的永磁同步电机直接转矩控制方法。以给定转速和实际转速作为输入信号,以给定电磁转矩作为输出信号,设计了 ADRC 速度调节器;在此基础上,在回归模型中选取高斯径向基核函数,深入分析了将LSSVM回归模型有效嵌入ADRC调节器的实现方法,实现对ADRC控制器的优化,以提高 ADRC 观测精度及系统动态响应速度,很大程度上降低了电机参数变化和负载扰动对系统的影响,进一步改善了系统的抗干扰能力。仿真和实验结果验证了该方法的可行性和有效性。
針對傳統PI調節器的缺陷,提齣一種基于最小二乘支持嚮量機(least squares support vector machine,LSSVM)優化自抗擾控製器(active-disturbance rejection control, ADRC)的永磁同步電機直接轉矩控製方法。以給定轉速和實際轉速作為輸入信號,以給定電磁轉矩作為輸齣信號,設計瞭 ADRC 速度調節器;在此基礎上,在迴歸模型中選取高斯徑嚮基覈函數,深入分析瞭將LSSVM迴歸模型有效嵌入ADRC調節器的實現方法,實現對ADRC控製器的優化,以提高 ADRC 觀測精度及繫統動態響應速度,很大程度上降低瞭電機參數變化和負載擾動對繫統的影響,進一步改善瞭繫統的抗榦擾能力。倣真和實驗結果驗證瞭該方法的可行性和有效性。
침대전통PI조절기적결함,제출일충기우최소이승지지향량궤(least squares support vector machine,LSSVM)우화자항우공제기(active-disturbance rejection control, ADRC)적영자동보전궤직접전구공제방법。이급정전속화실제전속작위수입신호,이급정전자전구작위수출신호,설계료 ADRC 속도조절기;재차기출상,재회귀모형중선취고사경향기핵함수,심입분석료장LSSVM회귀모형유효감입ADRC조절기적실현방법,실현대ADRC공제기적우화,이제고 ADRC 관측정도급계통동태향응속도,흔대정도상강저료전궤삼수변화화부재우동대계통적영향,진일보개선료계통적항간우능력。방진화실험결과험증료해방법적가행성화유효성。
Traditional PI regulator has some defects. Direct torque control (DTC) for permanent magnet synchronous motor (PMSM) based on active-disturbance rejection control (ADRC) optimized by least squares support vector machines (LSSVM) method was proposed in this paper. The speed regulator based on ADRC was designed with the inputs of given speed and real speed and the output of given electromagnet torque. The Gaussian radial basis kernel function was chosen in the model. The realization of the LSSVM regression model embedded in ADRC regulator was analyzed in-depth and detailed, which optimized the ADRC regulator. The ADRC observation precision and dynamic response are improved. The effect of motor parameters and load disturbances on the system is significantly reduced. The anti-interference ability of the system is further improved. Simulation and experiment results have verified the feasibility and effectiveness of this method.