南昌大学学报(理科版)
南昌大學學報(理科版)
남창대학학보(이과판)
JOURNAL OF NANCHANG UNIVERSITY(NATURAL SCIENCE)
2014年
4期
319-323
,共5页
色多项式%伴随多项式%因式分解%色等价性
色多項式%伴隨多項式%因式分解%色等價性
색다항식%반수다항식%인식분해%색등개성
chromatic polynomial%adj oint polynomials%factorization%chromatically equivalent graph%struc-ture characteristics
设Pn 是具有n个顶点的路,Sδ表示有δ=r+1个顶点的星图,把Pn 的n个顶点与nSδ的每一个分支的r度顶点依次重迭后得到的图记为PSnδ,用wS(kn+1)δ表示kPSnδ的每个分支的两个r+1度点与星图S2k+r+1的2k个1度点依次重迭后得到的图,运用图的伴随多项式的性质,讨论了当n=2tq-1≥2时,两类图簇wS(kn+1)δ∪(2k-1)Sδ的伴随多项式的因式分解定理,进而证明了它们的补图的色等价性。
設Pn 是具有n箇頂點的路,Sδ錶示有δ=r+1箇頂點的星圖,把Pn 的n箇頂點與nSδ的每一箇分支的r度頂點依次重迭後得到的圖記為PSnδ,用wS(kn+1)δ錶示kPSnδ的每箇分支的兩箇r+1度點與星圖S2k+r+1的2k箇1度點依次重迭後得到的圖,運用圖的伴隨多項式的性質,討論瞭噹n=2tq-1≥2時,兩類圖簇wS(kn+1)δ∪(2k-1)Sδ的伴隨多項式的因式分解定理,進而證明瞭它們的補圖的色等價性。
설Pn 시구유n개정점적로,Sδ표시유δ=r+1개정점적성도,파Pn 적n개정점여nSδ적매일개분지적r도정점의차중질후득도적도기위PSnδ,용wS(kn+1)δ표시kPSnδ적매개분지적량개r+1도점여성도S2k+r+1적2k개1도점의차중질후득도적도,운용도적반수다항식적성질,토론료당n=2tq-1≥2시,량류도족wS(kn+1)δ∪(2k-1)Sδ적반수다항식적인식분해정리,진이증명료타문적보도적색등개성。
Letting Pn be the path with n vertices and Sδthe Star withδ=r+1 vertices.We denoted the graph consisting of Pn and nSδby PSnδthrough coinciding each vertex of Pn with the vertex of degree r of every component of nSδ,and the graph obtained from kPSnδandc S2k+r+1 by wS(kn+1)δwhich coincided two vertices of degree r+1 of kPSnδwith 2k个 1 vertices of degree 1 of S2k+r+1 ,respectively.With the properties of adjoint polynomials,we proved factorization theorem of adjoint polynomials of two kinds of graphs wS(kn+1)δ∪(2k-1)Sδwith n=2tq-1.Furthermore,we obtained the chromatically equivalence of their complements.