哈尔滨工程大学学报
哈爾濱工程大學學報
합이빈공정대학학보
JOURNAL OF HARBIN ENGINEERING UNIVERSITY
2014年
9期
1053-1059
,共7页
欠驱动船舶%路径跟踪%Backstepping%神经网络%自适应控制%非线性函数
欠驅動船舶%路徑跟蹤%Backstepping%神經網絡%自適應控製%非線性函數
흠구동선박%로경근종%Backstepping%신경망락%자괄응공제%비선성함수
underactuated ship%path-following%backstepping%neural networks%adaptive control
为了进一步解决模型存在任意不确定性和外界环境干扰的欠驱动船舶路径跟踪控制问题,在Backstepping方法基础上,引入非线性函数逼近技术对模型中任意不确定因素进行补偿控制。考虑到“计算膨胀”和控制实时性问题,引入动态面控制和最小参数学习方法的设计思想,充分利用欠驱动船舶模型内部结构特征,将用于非线性函数逼近的神经网络权重压缩为4个参数进行在线学习。该算法具有形式简捷、学习参数少、易于工程实现的特点,仿真实例验证了所提出控制策略的有效性。
為瞭進一步解決模型存在任意不確定性和外界環境榦擾的欠驅動船舶路徑跟蹤控製問題,在Backstepping方法基礎上,引入非線性函數逼近技術對模型中任意不確定因素進行補償控製。攷慮到“計算膨脹”和控製實時性問題,引入動態麵控製和最小參數學習方法的設計思想,充分利用欠驅動船舶模型內部結構特徵,將用于非線性函數逼近的神經網絡權重壓縮為4箇參數進行在線學習。該算法具有形式簡捷、學習參數少、易于工程實現的特點,倣真實例驗證瞭所提齣控製策略的有效性。
위료진일보해결모형존재임의불학정성화외계배경간우적흠구동선박로경근종공제문제,재Backstepping방법기출상,인입비선성함수핍근기술대모형중임의불학정인소진행보상공제。고필도“계산팽창”화공제실시성문제,인입동태면공제화최소삼수학습방법적설계사상,충분이용흠구동선박모형내부결구특정,장용우비선성함수핍근적신경망락권중압축위4개삼수진행재선학습。해산법구유형식간첩、학습삼수소、역우공정실현적특점,방진실례험증료소제출공제책략적유효성。
In order to supplement the control design for underactuated ships with arbitrary uncertainties and external nonzero time-varying disturbances, a NNs-based concise robust adaptive control scheme is developed based on the popular backstepping method. By virtue of nonlinear function approximation, model uncertainties are approximated and compensated in the control design. In addition, the problems of “explosion of complexity” and the real-time control are solved using the dynamic surface control (DSC) and minimal learning parameter (MLP) techniques. A-long with the inherent structural characters of underactuated ships, the neural network weights used for nonlinear function approximation were actually minimized to 4 online learning parameters. Compared with the existing results, the proposed algorithm has the advantages of concise forms, fewer learning parameters and convenience of imple-mentation in practical applications. Numerical simulation results illustrate the effectiveness of the proposed scheme.