北华大学学报(自然科学版)
北華大學學報(自然科學版)
북화대학학보(자연과학판)
JOURNAL OF BEIHUA UNIVERSITY(NATURAL SCIENCE)
2014年
5期
561-570
,共10页
病毒感染模型%CTL免疫反应%抗体免疫反应%全局稳定性
病毒感染模型%CTL免疫反應%抗體免疫反應%全跼穩定性
병독감염모형%CTL면역반응%항체면역반응%전국은정성
viral infection model%CTL immune response%antibody immune response%global stability
研究了具有两类靶细胞和CTL免疫应答与抗体免疫反应的时滞病毒感染模型的动力学行为。模型描述了病毒和两类细胞的相互作用:CD4+ T淋巴细胞与巨噬细胞。通过构造适当的Lyapunov泛函,使用LaSalle不变性原理,证明了CD4+T淋巴细胞和巨噬细胞的基本再生总数R0、CTL免疫再生数R1、抗体免疫再生数R2、CTL免疫竞争再生数R3和抗体免疫竞争再生数R4决定了模型的全局性态。若R0≤1,病毒在体内清除。若R0>1,正解在R1≤1,R2≤1时趋于无免疫平衡点,在R1>1≥R4时趋于CTL主导平衡点,在R2>1≥R3时趋于抗体主导平衡点,在R3>1且R4>1时趋于正平衡点,获得了无病平衡点、无免疫平衡点、CTL主导平衡点、抗体主导平衡点和正平衡点全局渐近稳定的充分条件。
研究瞭具有兩類靶細胞和CTL免疫應答與抗體免疫反應的時滯病毒感染模型的動力學行為。模型描述瞭病毒和兩類細胞的相互作用:CD4+ T淋巴細胞與巨噬細胞。通過構造適噹的Lyapunov汎函,使用LaSalle不變性原理,證明瞭CD4+T淋巴細胞和巨噬細胞的基本再生總數R0、CTL免疫再生數R1、抗體免疫再生數R2、CTL免疫競爭再生數R3和抗體免疫競爭再生數R4決定瞭模型的全跼性態。若R0≤1,病毒在體內清除。若R0>1,正解在R1≤1,R2≤1時趨于無免疫平衡點,在R1>1≥R4時趨于CTL主導平衡點,在R2>1≥R3時趨于抗體主導平衡點,在R3>1且R4>1時趨于正平衡點,穫得瞭無病平衡點、無免疫平衡點、CTL主導平衡點、抗體主導平衡點和正平衡點全跼漸近穩定的充分條件。
연구료구유량류파세포화CTL면역응답여항체면역반응적시체병독감염모형적동역학행위。모형묘술료병독화량류세포적상호작용:CD4+ T림파세포여거서세포。통과구조괄당적Lyapunov범함,사용LaSalle불변성원리,증명료CD4+T림파세포화거서세포적기본재생총수R0、CTL면역재생수R1、항체면역재생수R2、CTL면역경쟁재생수R3화항체면역경쟁재생수R4결정료모형적전국성태。약R0≤1,병독재체내청제。약R0>1,정해재R1≤1,R2≤1시추우무면역평형점,재R1>1≥R4시추우CTL주도평형점,재R2>1≥R3시추우항체주도평형점,재R3>1차R4>1시추우정평형점,획득료무병평형점、무면역평형점、CTL주도평형점、항체주도평형점화정평형점전국점근은정적충분조건。
The dynamical behaviors of the delayed viral infection model with two class target cells and CTL immune response and antibody immune response are studied. The model describes the interaction of viral and target cells:CD4+ T cells and macrophages. By constructing suitable Lyapunov function, using the LaSalle invariance principle, we have shown that CD4+ T cells and macrophages basic reproductive amounts R0 , CTL immune response reproductive number R1 , antibody immune response reproductive number R2 , CTL immune response competition reproductive number R3 and antibody immune response competition reproductive number R4 determine the global properties of the model. If R0≤1,the virus is cleared. For R0>1,positive solutions approach to an immune-free equilibrium if R1≤1,R2≤1,to a CTL dominant equilibrium if R1>1≥R4,to a antibody dominant equilibrium if R2>1≥R3 ,and to an endemic equilibrium if R3>1,R4>1,the sufficient conditions of the global stability of the infection-free equilibrium,the immune-free equilibrium,the CTL dominant equilibrium,the antibody dominant equilibrium and the positive equilibrium are obtained.