中国矿业
中國礦業
중국광업
CHINA MINING MAGAZINE
2014年
10期
152-156
,共5页
张召冉%杨仁树%许炳%牛天勇
張召冉%楊仁樹%許炳%牛天勇
장소염%양인수%허병%우천용
矿建工程%神经网络%投资估算%预测
礦建工程%神經網絡%投資估算%預測
광건공정%신경망락%투자고산%예측
mine construction engineering%neural network%investment estimation%prediction
矿建工程投资额大、周期长、不确定性大的特点,决定了投资估算快速性和准确性对投资决策至关重要。在分析投资构成的基础上,建立基于10个估算子系统的投资估算模型,以14条井底平巷为例,选取断面大小、支护方式、锚杆消耗等技术、经济指标作为工程特征,对其进行量化和归一化处理,用Matlab提供的神经网络函数构建三层、7个输入指标、一个输出指标的BPNN模型来预测巷道工程投资估算值。结果表明,只要工程特征选取合适及BPNN模型的参数设置准确,神经网络方法能较好较快地达到目标,预测精度在±10%以内,能够满足估算预测快速性和准确性的要求。
礦建工程投資額大、週期長、不確定性大的特點,決定瞭投資估算快速性和準確性對投資決策至關重要。在分析投資構成的基礎上,建立基于10箇估算子繫統的投資估算模型,以14條井底平巷為例,選取斷麵大小、支護方式、錨桿消耗等技術、經濟指標作為工程特徵,對其進行量化和歸一化處理,用Matlab提供的神經網絡函數構建三層、7箇輸入指標、一箇輸齣指標的BPNN模型來預測巷道工程投資估算值。結果錶明,隻要工程特徵選取閤適及BPNN模型的參數設置準確,神經網絡方法能較好較快地達到目標,預測精度在±10%以內,能夠滿足估算預測快速性和準確性的要求。
광건공정투자액대、주기장、불학정성대적특점,결정료투자고산쾌속성화준학성대투자결책지관중요。재분석투자구성적기출상,건립기우10개고산자계통적투자고산모형,이14조정저평항위례,선취단면대소、지호방식、묘간소모등기술、경제지표작위공정특정,대기진행양화화귀일화처리,용Matlab제공적신경망락함수구건삼층、7개수입지표、일개수출지표적BPNN모형래예측항도공정투자고산치。결과표명,지요공정특정선취합괄급BPNN모형적삼수설치준학,신경망락방법능교호교쾌지체도목표,예측정도재±10%이내,능구만족고산예측쾌속성화준학성적요구。
Mine construction has the characteristics of huge investment ,long cycle ,large uncertainty , which determine the speed and accuracy of the investment estimate for investment decisions is essential . Established investment estimation model based on 10 estimates subsystems , for example bottom drift , selecting the section size , supporting way , rock bolt consumption and other technical and economic indicators as engineering features , making quantification and normalization , provided neural network function with Matlab to build BPNN (Back Propagation Neural Network)model for predicting the roadway project investment ,the model included three layers ,seven input indicators ,one output indicators .The results show that ,as long as the selecting of project characteristics and BPNN model parameter settings were appropriate and accurate ,the neural network method can quickly achieve the target ,the prediction accuracy could reach ± 10% or less ,meeting requirements of estimates predict rapidity and accuracy .