强激光与粒子束
彊激光與粒子束
강격광여입자속
HIGH POWER LASER AND PARTICLEBEAMS
2014年
10期
126-130
,共5页
王冬冬%张炜%陶胜杰%田干%杨正伟
王鼕鼕%張煒%陶勝傑%田榦%楊正偉
왕동동%장위%도성걸%전간%양정위
支持向量机%热波检测%热波图像%Wiener滤波%图像分割
支持嚮量機%熱波檢測%熱波圖像%Wiener濾波%圖像分割
지지향량궤%열파검측%열파도상%Wiener려파%도상분할
support vector machine%thermal waving inspection%thermal waving image%Wiener filter%image seg-mentation
作为热波无损检测技术中的关键环节,热波图像分割对结构损伤的有效识别与准确评估具有重要影响。为克服红外热波图像背景噪声大,对比度低等因素对损伤识别的影响,提出了一种基于支持向量机的热波图像分割方法。该方法首先采用 Wiener滤波对热波图像进行预处理,然后随机选取目标区域和背景区域内多个像素点的像素值组成目标向量与背景向量,对基于多项式核函数的支持向量机进行训练,最后将训练好的分类器应用于不同的热波图像,实现热波图像的分割。试验结果表明:该方法可有效克服热波图像背景噪声大的问题,较好地保留了缺陷区域分割的完整性;与基于硬阈值的图像分割方法相比,该方法能更好地抑制背景区域的噪声干扰,更有利于损伤的识别与评估。
作為熱波無損檢測技術中的關鍵環節,熱波圖像分割對結構損傷的有效識彆與準確評估具有重要影響。為剋服紅外熱波圖像揹景譟聲大,對比度低等因素對損傷識彆的影響,提齣瞭一種基于支持嚮量機的熱波圖像分割方法。該方法首先採用 Wiener濾波對熱波圖像進行預處理,然後隨機選取目標區域和揹景區域內多箇像素點的像素值組成目標嚮量與揹景嚮量,對基于多項式覈函數的支持嚮量機進行訓練,最後將訓練好的分類器應用于不同的熱波圖像,實現熱波圖像的分割。試驗結果錶明:該方法可有效剋服熱波圖像揹景譟聲大的問題,較好地保留瞭缺陷區域分割的完整性;與基于硬閾值的圖像分割方法相比,該方法能更好地抑製揹景區域的譟聲榦擾,更有利于損傷的識彆與評估。
작위열파무손검측기술중적관건배절,열파도상분할대결구손상적유효식별여준학평고구유중요영향。위극복홍외열파도상배경조성대,대비도저등인소대손상식별적영향,제출료일충기우지지향량궤적열파도상분할방법。해방법수선채용 Wiener려파대열파도상진행예처리,연후수궤선취목표구역화배경구역내다개상소점적상소치조성목표향량여배경향량,대기우다항식핵함수적지지향량궤진행훈련,최후장훈련호적분류기응용우불동적열파도상,실현열파도상적분할。시험결과표명:해방법가유효극복열파도상배경조성대적문제,교호지보류료결함구역분할적완정성;여기우경역치적도상분할방법상비,해방법능경호지억제배경구역적조성간우,경유리우손상적식별여평고。
As a key part of the infrared thermal waving non-destructive testing technique,the thermal wave image segmen-tation plays an important role in the efficient detection and accurate evaluation of the structural defect.In order to minimize the in-fluence caused by the noisy background and low contrast,the support vector machine was applied to the thermal wave image seg-mentation.Combining with the Wiener filter,the proposed procedure pre-processed the thermal wave image at first to enhance the contrast.Consequently,several pixel values of the background and target regions were respectively chosen to compose the characteristic vectors and input to the support vector machine,whose kernel function was set to being radial based function.Final-ly,the classifier obtained by the training step was applied to the thermal wave image and a binary image was obtained,which had been carried out the thermal wave image segmentation.Experimental results show that the proposed method can efficiently en-hance the contrast between the background and target regions with a powerful noise retraining capability.Compared with the im-age segmentation method based on the hard threshold,the proposed procedure is of more benefit to the identification and evalua-tion of the defects and is valuable for the engineering application.