计算机系统应用
計算機繫統應用
계산궤계통응용
APPLICATIONS OF THE COMPUTER SYSTEMS
2014年
10期
193-197
,共5页
参数线性规划%L1精确罚函数%误差函数%神经网络
參數線性規劃%L1精確罰函數%誤差函數%神經網絡
삼수선성규화%L1정학벌함수%오차함수%신경망락
parametric linear programming%L1 exact penalty function%error function%neural network
针对不等式约束条件下,目标函数和约束条件中含有参数的线性规划问题,提出一种基于新型光滑精确罚函数的神经网络计算方法。引入误差函数构造单位阶跃函数的近似函数,给出一种更加精确地逼近于 L1精确罚函数的光滑罚函数,讨论了其基本性质;利用所提光滑精确罚函数建立了求解参数线性规划问题的神经网络模型,证明了该网络模型的稳定性和收敛性,并给出了详细的算法步骤。数值仿真验证了所提方法具有罚因子取值小、结构简单、计算精度高等优点。
針對不等式約束條件下,目標函數和約束條件中含有參數的線性規劃問題,提齣一種基于新型光滑精確罰函數的神經網絡計算方法。引入誤差函數構造單位階躍函數的近似函數,給齣一種更加精確地逼近于 L1精確罰函數的光滑罰函數,討論瞭其基本性質;利用所提光滑精確罰函數建立瞭求解參數線性規劃問題的神經網絡模型,證明瞭該網絡模型的穩定性和收斂性,併給齣瞭詳細的算法步驟。數值倣真驗證瞭所提方法具有罰因子取值小、結構簡單、計算精度高等優點。
침대불등식약속조건하,목표함수화약속조건중함유삼수적선성규화문제,제출일충기우신형광활정학벌함수적신경망락계산방법。인입오차함수구조단위계약함수적근사함수,급출일충경가정학지핍근우 L1정학벌함수적광활벌함수,토론료기기본성질;이용소제광활정학벌함수건립료구해삼수선성규화문제적신경망락모형,증명료해망락모형적은정성화수렴성,병급출료상세적산법보취。수치방진험증료소제방법구유벌인자취치소、결구간단、계산정도고등우점。
In view of solving linear programming problems with parameters both in objective function and constraints, a computational method based on novel smooth exact penalty function neural networks is proposed. First, the error function is introduced to constructing the approximate function of unit step function, which is used to give the smooth penalty function that more accurately approximates the L1 exact penalty function, and its basic properties are discussed. Second, the neural network model for parameter linear programming problems is constructed based on the proposed smooth exact penalty function and the stability and convergence of the neural networks are proved. Moreover, the specific calculation steps of our proposed neural network model for the optimization are given. Finally, a numerical example is given to illustrate that the proposed method possesses the smaller penalty factor, easier construction and higher accuracy.