计算机系统应用
計算機繫統應用
계산궤계통응용
APPLICATIONS OF THE COMPUTER SYSTEMS
2014年
10期
119-124
,共6页
陈洪涛%肖如良%林丽玉%颜杰敏%蔡声镇
陳洪濤%肖如良%林麗玉%顏傑敏%蔡聲鎮
진홍도%초여량%림려옥%안걸민%채성진
推荐系统%更新周期%递增数据%流行趋势动量%混合推荐
推薦繫統%更新週期%遞增數據%流行趨勢動量%混閤推薦
추천계통%경신주기%체증수거%류행추세동량%혼합추천
recommendation system%updating cycle%incremental data%popular trend momentum%hybrid recommend-dation
推荐系统由于较大的训练数据量和推荐算法较高的复杂度,其推荐的更新周期往往较长。然而系统上的数据时刻都在增长,更新推荐期间会产生大量数据,这些新数据对下一刻的推荐有较大的利用价值,系统却无法及时利用起来。为了能及时的利用这些新数据来提高推荐系统的推荐质量,提出一种数据递增式的混合推荐方法。该模型主要分为离线计算模块和在线推荐模块,离线模块用于计算出个性化推荐列表,在线推荐模根据递增的实时数据维护一个流行趋势动量表,然后结合两个模块的结果给出匿名推荐或者个性化推荐。实验证明,该方法简单、有效、可行,能较好的改善推荐系统性能。
推薦繫統由于較大的訓練數據量和推薦算法較高的複雜度,其推薦的更新週期往往較長。然而繫統上的數據時刻都在增長,更新推薦期間會產生大量數據,這些新數據對下一刻的推薦有較大的利用價值,繫統卻無法及時利用起來。為瞭能及時的利用這些新數據來提高推薦繫統的推薦質量,提齣一種數據遞增式的混閤推薦方法。該模型主要分為離線計算模塊和在線推薦模塊,離線模塊用于計算齣箇性化推薦列錶,在線推薦模根據遞增的實時數據維護一箇流行趨勢動量錶,然後結閤兩箇模塊的結果給齣匿名推薦或者箇性化推薦。實驗證明,該方法簡單、有效、可行,能較好的改善推薦繫統性能。
추천계통유우교대적훈련수거량화추천산법교고적복잡도,기추천적경신주기왕왕교장。연이계통상적수거시각도재증장,경신추천기간회산생대량수거,저사신수거대하일각적추천유교대적이용개치,계통각무법급시이용기래。위료능급시적이용저사신수거래제고추천계통적추천질량,제출일충수거체증식적혼합추천방법。해모형주요분위리선계산모괴화재선추천모괴,리선모괴용우계산출개성화추천렬표,재선추천모근거체증적실시수거유호일개류행추세동량표,연후결합량개모괴적결과급출닉명추천혹자개성화추천。실험증명,해방법간단、유효、가행,능교호적개선추천계통성능。
Due to the large amount of training data and the high complexity of its recommend algorithm, the updating cycle of recommendation system tend to be long. However, the data on the system is growing all the time, and a lot of data is produced during the cycle, which is useful for the recommendation of next moment, and recommendation system can’t use these data in time. In order to use these data in time to improve the quality of recommendation system, a new approach to hybrid recommendation based on incremental data was proposed. The approach mainly divided recommendation into offline and online module, the offline module is used to produce the personalized recommendation list, while the online recommendation module maintains a list of popular trend momentum based on real-time and incremental data. Then, combining with the results of the two modules, based on which give users anonymous or personalized recommendation. Experiments show that the approach is simple, effective, feasible, and can improve the performance of recommendation system better.