制冷学报
製冷學報
제랭학보
JOURNAL OF REFRIGERATION
2014年
5期
7-13
,共7页
赵阳%陈燕燕%罗二仓%周远
趙暘%陳燕燕%囉二倉%週遠
조양%진연연%라이창%주원
低温热泵%行波双作用%热声热机%交变流动
低溫熱泵%行波雙作用%熱聲熱機%交變流動
저온열빙%행파쌍작용%열성열궤%교변류동
ultra-low temperature heat pump%travelling-wave double-action%thermoacoustic machine%cyclic flow
采用蒸气压缩循环的传统热泵在较低的环境温度工况下工作时,其运行效果及效率均有所下降,对此本文首先提出了一种全新的热泵系统,即由直线电机驱动的双作用行波热声热泵环路系统,并在模拟优化计算的基础上取环路系统中的一个独立单元搭建了系统测试实验平台。通过改变运行工况,对双作用热声热泵的核心部件进行了初步测试,实验结果验证了计算模型的准确性,且实验重复性较好。在现有实验条件下,环境温度-20℃,供热温度50℃,热泵核心部件净消耗声功不超过200 W,单元热泵实验台的泵热量最高可达到260 W,此时制热COP可达到2?1。通过调节声场特性改变输入到系统中的声功,在上述温度工况下可获得最大制热COP为2?4;如果环境温度升高至0℃,系统制热COP还可以提升至3?0以上。
採用蒸氣壓縮循環的傳統熱泵在較低的環境溫度工況下工作時,其運行效果及效率均有所下降,對此本文首先提齣瞭一種全新的熱泵繫統,即由直線電機驅動的雙作用行波熱聲熱泵環路繫統,併在模擬優化計算的基礎上取環路繫統中的一箇獨立單元搭建瞭繫統測試實驗平檯。通過改變運行工況,對雙作用熱聲熱泵的覈心部件進行瞭初步測試,實驗結果驗證瞭計算模型的準確性,且實驗重複性較好。在現有實驗條件下,環境溫度-20℃,供熱溫度50℃,熱泵覈心部件淨消耗聲功不超過200 W,單元熱泵實驗檯的泵熱量最高可達到260 W,此時製熱COP可達到2?1。通過調節聲場特性改變輸入到繫統中的聲功,在上述溫度工況下可穫得最大製熱COP為2?4;如果環境溫度升高至0℃,繫統製熱COP還可以提升至3?0以上。
채용증기압축순배적전통열빙재교저적배경온도공황하공작시,기운행효과급효솔균유소하강,대차본문수선제출료일충전신적열빙계통,즉유직선전궤구동적쌍작용행파열성열빙배로계통,병재모의우화계산적기출상취배로계통중적일개독립단원탑건료계통측시실험평태。통과개변운행공황,대쌍작용열성열빙적핵심부건진행료초보측시,실험결과험증료계산모형적준학성,차실험중복성교호。재현유실험조건하,배경온도-20℃,공열온도50℃,열빙핵심부건정소모성공불초과200 W,단원열빙실험태적빙열량최고가체도260 W,차시제열COP가체도2?1。통과조절성장특성개변수입도계통중적성공,재상술온도공황하가획득최대제열COP위2?4;여과배경온도승고지0℃,계통제열COP환가이제승지3?0이상。
Heat pump systems, offering economical alternatives in recovering waste heat from different sources for various industrial, com-mercial and residential applications, is considered to be a very environmentally-friendly heat and power transfer system. In this paper, to solve the problems of traditional vapor compression heat pump, a novel travelling-wave thermoacoustic heat pump ( TWTAHP) is presen-ted to meet the requirement of working in ultra-low temperature. Base on the theoretical simulation and structure optimization, we have built an experimental apparatus for preliminary test, which is only one single unit of the whole TWTAHP system. Results show that the simulation and the testing results were agreeable as expected. Under the -20℃ environment temperature and the 50℃ heating tempera-ture, we could obtain a maximal COP of 2. 1 and 260 W heat pumping capacity for one single unit by consuming acoustic power less than 200 W. Furthermore, a COP above 3. 0 was achieved when the cold temperature was raised to 0 ℃.