塑性工程学报
塑性工程學報
소성공정학보
JOURNAL OF PLASTICITY ENGINEERING
2014年
5期
127-132
,共6页
赵志勇%申江龙%顾勇飞%骆俊廷
趙誌勇%申江龍%顧勇飛%駱俊廷
조지용%신강룡%고용비%락준정
纳米压痕%Si2 N2 O-Si3 N4%弹塑性%应力应变关系%有限元分析
納米壓痕%Si2 N2 O-Si3 N4%彈塑性%應力應變關繫%有限元分析
납미압흔%Si2 N2 O-Si3 N4%탄소성%응력응변관계%유한원분석
nanoindentation%Si2 N2 O-Si3 N4%elastic-plastic%stress-strain relationship%finite element analysis
对分别在1600℃、1650℃、1700℃条件下热压烧结制备的Si2 N2 O-Si3 N4超细晶陶瓷进行纳米压痕试验测试,获得了材料的硬度值、弹性模量值和载荷-深度曲线。考虑试验中波士压针的磨损缺陷,通过理论和数值模拟相结合的方法,确定压针的尖端球面半径 RBerk =500 nm。以纳米压痕试验数据为依据,利用 M SC. M arc有限元仿真软件模拟纳米压痕试验压针压入材料表面的过程,反推出所测试材料的应力应变关系曲线,其屈服应力随弹性模量的减小而降低,分别为47 GPa、43 GPa、35 GPa。通过比较分析压痕区域的应变场和应力场,分析纳米压痕试验中材料的变形特征。
對分彆在1600℃、1650℃、1700℃條件下熱壓燒結製備的Si2 N2 O-Si3 N4超細晶陶瓷進行納米壓痕試驗測試,穫得瞭材料的硬度值、彈性模量值和載荷-深度麯線。攷慮試驗中波士壓針的磨損缺陷,通過理論和數值模擬相結閤的方法,確定壓針的尖耑毬麵半徑 RBerk =500 nm。以納米壓痕試驗數據為依據,利用 M SC. M arc有限元倣真軟件模擬納米壓痕試驗壓針壓入材料錶麵的過程,反推齣所測試材料的應力應變關繫麯線,其屈服應力隨彈性模量的減小而降低,分彆為47 GPa、43 GPa、35 GPa。通過比較分析壓痕區域的應變場和應力場,分析納米壓痕試驗中材料的變形特徵。
대분별재1600℃、1650℃、1700℃조건하열압소결제비적Si2 N2 O-Si3 N4초세정도자진행납미압흔시험측시,획득료재료적경도치、탄성모량치화재하-심도곡선。고필시험중파사압침적마손결함,통과이론화수치모의상결합적방법,학정압침적첨단구면반경 RBerk =500 nm。이납미압흔시험수거위의거,이용 M SC. M arc유한원방진연건모의납미압흔시험압침압입재료표면적과정,반추출소측시재료적응력응변관계곡선,기굴복응력수탄성모량적감소이강저,분별위47 GPa、43 GPa、35 GPa。통과비교분석압흔구역적응변장화응력장,분석납미압흔시험중재료적변형특정。
The hardness ,the elastic modulus and the load-depth curves of the ultrafine-grained Si2 N2 O-Si3 N4 composites ,which are fabricated by hot-press sintering at 1600℃ ,1650℃ ,and 1700℃ ,are tested by nanoindentation .The imperfection of Berkov-ich indenter used in the nanoindentation test is considered ,and its tip radius ,RBerk =500 nm ,is determined by theoretical calcula-tion and numerical simulation .The processes of nanoindentation are simulated by finite element software MSC.MARC based on the nanoindentation experimental date .The stress-strain curves are derived through comparative analysis between simulation re-sults and experiment results .The yield stress of the materials tested by the nanoindentation increases with the increasing of the e-lastic modulus ,with corresponding values of 47 GPa ,43 GPa and 35 GPa .The deformation behaviour of the nanoindentation is further studied through comparative analysis of strain and stress distributions .