工业仪表与自动化装置
工業儀錶與自動化裝置
공업의표여자동화장치
INDUSTRIAL INSTRUMENTATION & AUTOMATION
2014年
5期
59-62,70
,共5页
线性回归%GM(1,1)模型%预测%印刷包衬压缩变形%压缩变形量
線性迴歸%GM(1,1)模型%預測%印刷包襯壓縮變形%壓縮變形量
선성회귀%GM(1,1)모형%예측%인쇄포츤압축변형%압축변형량
linear regression%GM (1,1) model%prediction%printed lining compression deforma-tion%compression deformation
运用线性回归对预测数据进行分析,剔除异常数据,用GM(1,1)模型进行预测,有效降低了数据相对误差,提高了预测数据的精度。选用印刷包衬压缩变形的压缩变形量λ值,用线性回归进行数据分析并剔除异常数据后用GM(1,1)进行预测,使得预测数据具有更高的准确性和适应性。实验及仿真结果表明,经过前期数据分析整理后的灰色预测模型,其预测期望值远优于单纯的回归模型和GM(1,1)模型。
運用線性迴歸對預測數據進行分析,剔除異常數據,用GM(1,1)模型進行預測,有效降低瞭數據相對誤差,提高瞭預測數據的精度。選用印刷包襯壓縮變形的壓縮變形量λ值,用線性迴歸進行數據分析併剔除異常數據後用GM(1,1)進行預測,使得預測數據具有更高的準確性和適應性。實驗及倣真結果錶明,經過前期數據分析整理後的灰色預測模型,其預測期望值遠優于單純的迴歸模型和GM(1,1)模型。
운용선성회귀대예측수거진행분석,척제이상수거,용GM(1,1)모형진행예측,유효강저료수거상대오차,제고료예측수거적정도。선용인쇄포츤압축변형적압축변형량λ치,용선성회귀진행수거분석병척제이상수거후용GM(1,1)진행예측,사득예측수거구유경고적준학성화괄응성。실험급방진결과표명,경과전기수거분석정리후적회색예측모형,기예측기망치원우우단순적회귀모형화GM(1,1)모형。
In this paper, by using the linear regression in analysis of the predicted data, eliminating abnormal data, using GM (1,1) model to predict, data relative error is reduced and forecast accuracy of data is improved.Selecting compression deformation value of printing lining compression deformation, the data was analyzed with linear regression and abnormal data eliminated to forecast by GM (1,1) to make sure the predicted data with higher accuracy and adaptability.The experimental and simulation results in-dicate that, after preliminary data analysis, the predicted expection value of grey forecasting model is much better than that of pure regression model and GM (1,1) model.