海洋通报
海洋通報
해양통보
MARINE SCIENCE BULLETIN
2014年
5期
519-526
,共8页
黑潮%流速垂直分布%热成风关系%PN断面
黑潮%流速垂直分佈%熱成風關繫%PN斷麵
흑조%류속수직분포%열성풍관계%PN단면
Kuroshio%vertical distribution of velocity%thermal wind relation%PN section
基于全球海洋再分析模拟GLORYS2(Global Ocean Reanalysis Simulation 2)结果,分析了PN断面(126.0oE-128.2oE,1000 m以浅)黑潮流速垂直结构的季节和年际变化,探讨了黑潮流速垂直结构形成的动力学机制。结果表明:1) PN断面黑潮夏季流量最大,春季次之,秋、冬季节最小;气候态平均的冬、夏季流速最大值都位于次表层,春、秋季节流速最大值位于表层;夏季相对流速较大、最大值深度较浅;等密线在黑潮主轴区下凹,冬季更为明显。流速最大值深度和密度水平梯度为零的深度均表现出了较大的年际差异,该年际变化甚至超过季节差异;2)流速与密度符合热成风关系。黑潮通量由太平洋大尺度风场及中尺度运动两者共同决定,但局地的热通量和环流对温盐的输运共同影响密度场,调节黑潮流速的垂直分布,影响水通量的分配及营养盐输运;3)有些年份夏季流速最大值出现在表层,可能是夏季西南季风诱导陆架水离岸输运进入黑潮上层导致的结果。非线性、非地转物理过程的影响没有考虑在本研究中,热成风关系能够解释黑潮流速垂直分布形成的部分原因。
基于全毬海洋再分析模擬GLORYS2(Global Ocean Reanalysis Simulation 2)結果,分析瞭PN斷麵(126.0oE-128.2oE,1000 m以淺)黑潮流速垂直結構的季節和年際變化,探討瞭黑潮流速垂直結構形成的動力學機製。結果錶明:1) PN斷麵黑潮夏季流量最大,春季次之,鞦、鼕季節最小;氣候態平均的鼕、夏季流速最大值都位于次錶層,春、鞦季節流速最大值位于錶層;夏季相對流速較大、最大值深度較淺;等密線在黑潮主軸區下凹,鼕季更為明顯。流速最大值深度和密度水平梯度為零的深度均錶現齣瞭較大的年際差異,該年際變化甚至超過季節差異;2)流速與密度符閤熱成風關繫。黑潮通量由太平洋大呎度風場及中呎度運動兩者共同決定,但跼地的熱通量和環流對溫鹽的輸運共同影響密度場,調節黑潮流速的垂直分佈,影響水通量的分配及營養鹽輸運;3)有些年份夏季流速最大值齣現在錶層,可能是夏季西南季風誘導陸架水離岸輸運進入黑潮上層導緻的結果。非線性、非地轉物理過程的影響沒有攷慮在本研究中,熱成風關繫能夠解釋黑潮流速垂直分佈形成的部分原因。
기우전구해양재분석모의GLORYS2(Global Ocean Reanalysis Simulation 2)결과,분석료PN단면(126.0oE-128.2oE,1000 m이천)흑조류속수직결구적계절화년제변화,탐토료흑조류속수직결구형성적동역학궤제。결과표명:1) PN단면흑조하계류량최대,춘계차지,추、동계절최소;기후태평균적동、하계류속최대치도위우차표층,춘、추계절류속최대치위우표층;하계상대류속교대、최대치심도교천;등밀선재흑조주축구하요,동계경위명현。류속최대치심도화밀도수평제도위령적심도균표현출료교대적년제차이,해년제변화심지초과계절차이;2)류속여밀도부합열성풍관계。흑조통량유태평양대척도풍장급중척도운동량자공동결정,단국지적열통량화배류대온염적수운공동영향밀도장,조절흑조류속적수직분포,영향수통량적분배급영양염수운;3)유사년빈하계류속최대치출현재표층,가능시하계서남계풍유도륙가수리안수운진입흑조상층도치적결과。비선성、비지전물리과정적영향몰유고필재본연구중,열성풍관계능구해석흑조류속수직분포형성적부분원인。
The seasonal and inter-annual variations of vertical distribution of Kuroshio velocity and its formation mechanism are studied by analyzing the GLORYS2 ( Global Ocean Reanalysis Simulation 2) dataset at the PN section (126.0oE-128.2oE, depth less than 1000 m) . The results indicate that 1) The maximum transport at PN section is in summer, followed by spring, and the minimum is in autumn and winter; the maximum velocities are located in the subsurface in both winter and summer with relatively larger velocity and shallower depth in summer; the velocity core is located in the surface in spring and autumn. The isopycnic line has a clear depression around the Kuroshio axis in winter. The depths of maximum velocity and zero horizontal density gradient both have significant seasonal and inter-annual variations, and the latter is even larger. 2) The distributions of velocity and density are in accordance with the thermal wind relation. Although the Kuroshio transport is determined by the large-scale wind field and meso-scale motion in the Pacific Ocean, local heat flux and thermohaline circulation will influence the density field and modify the vertical structure of Kuroshio velocity, which is actually the adjustment of allocation of water fluxes and nutrients transport. 3) Shelf water offshore transport into the Kuroshio upper layer induced by southwest monsoon may contribute to the maximum velocity up to the surface in summer. Nonlinear and nongeostrophic processes are not considered in this study, and the thermal wind relation accounts for part of the vertical structure of Kuroshio velocity.