工程数学学报
工程數學學報
공정수학학보
CHINESE JOURNAL OF ENGINEERING MATHEMATICS
2014年
5期
779-790
,共12页
边值问题%分数阶微分包含%Caputo分数阶导数%弱解
邊值問題%分數階微分包含%Caputo分數階導數%弱解
변치문제%분수계미분포함%Caputo분수계도수%약해
boundary value problem%fractional differential inclusion%Caputo fractional deriva-tive%weak solutions
许多物理、航天科学、生态科学、工程中的实际问题都需要用分数阶微分方程来描述,因此对于分数阶微分方程的研究有着十分重要的理论意义和实践价值。本文在Pettis可积性假设条件下讨论了一类带有非分离边值条件的非线性分数阶微分包含弱解的存在性。微分算子是Caputo导算子,并且非线性项具有弱序列闭图像。本文的理论分析基于Monch不动点定理和弱非紧性测度的技巧,并举例论证了结论的有效性。
許多物理、航天科學、生態科學、工程中的實際問題都需要用分數階微分方程來描述,因此對于分數階微分方程的研究有著十分重要的理論意義和實踐價值。本文在Pettis可積性假設條件下討論瞭一類帶有非分離邊值條件的非線性分數階微分包含弱解的存在性。微分算子是Caputo導算子,併且非線性項具有弱序列閉圖像。本文的理論分析基于Monch不動點定理和弱非緊性測度的技巧,併舉例論證瞭結論的有效性。
허다물리、항천과학、생태과학、공정중적실제문제도수요용분수계미분방정래묘술,인차대우분수계미분방정적연구유착십분중요적이론의의화실천개치。본문재Pettis가적성가설조건하토론료일류대유비분리변치조건적비선성분수계미분포함약해적존재성。미분산자시Caputo도산자,병차비선성항구유약서렬폐도상。본문적이론분석기우Monch불동점정리화약비긴성측도적기교,병거례론증료결론적유효성。
Many practical problems, such as those from physics, aerospace science, ecological science and engineering, need to be described by fractional differential equations, so it is important to study these equations in theory and implement. In this paper, under the Pettis integrability assumption, we discuss the existence of weak solution to the boundary value problem for a class of nonlinear fractional differential inclu-sion involving non-separated boundary conditions. The differential operator is the Caputo derivative, and the nonlinear term has weakly sequentially closed graph. The analysis relies on Monch’s fixed point theorem combined with the technique of measures of weak noncompactness. Finally, an example is given to illustrate the effectiveness of the proposed method.