华西口腔医学杂志
華西口腔醫學雜誌
화서구강의학잡지
WEST CHINA JOURNAL OF STOMATOLOGY
2014年
5期
450-454
,共5页
苏英敏%宋光保%贺玲凤%钟振威
囌英敏%宋光保%賀玲鳳%鐘振威
소영민%송광보%하령봉%종진위
生物力学%种植体%光弹分析%应力分布
生物力學%種植體%光彈分析%應力分佈
생물역학%충식체%광탄분석%응력분포
biomechanics%implant%photoelastic analysis%stress distribution
目的:研究不同锥度设计的TensionMore(TM)种植体对种植体骨界面应力分布的影响。方法医用纯钛制作5组种植体,分别为圆柱状螺纹种植体、上1/3TM种植体(锥度长度为3mm)、中1/2TM种植体(锥度长度为5mm)、下1/3TM种植体(锥度长度为7mm)、全长变化TM种植体(锥度长度为10mm)。每组种植体各自包埋于由松质骨及1mm皮质骨构成的复合光弹模型中,共建立5个复合光弹模型。每一模型先后分别予以垂直及斜向(45°)静态加载力。利用光弹应力分析法比较5组种植体骨界面的生物力学特征。结果垂直加载下,上1/3TM种植体、中1/2TM种植体、下1/3TM种植体比圆柱状螺纹种植体在皮质骨区及松质骨区的局部应力集中小;斜向加载下,4组TM种植体皮质骨区局部应力集中均低于圆柱状螺纹种植体。无论在垂直、斜向加载下,上1/3TM种植体皮质骨区局部应力集中均最小。结论合理锥度设计的TM种植体周围皮质骨、松质骨应力分布均匀合理,在不同载荷条件下,上1/3TM种植体骨界面生物力学表现最优。
目的:研究不同錐度設計的TensionMore(TM)種植體對種植體骨界麵應力分佈的影響。方法醫用純鈦製作5組種植體,分彆為圓柱狀螺紋種植體、上1/3TM種植體(錐度長度為3mm)、中1/2TM種植體(錐度長度為5mm)、下1/3TM種植體(錐度長度為7mm)、全長變化TM種植體(錐度長度為10mm)。每組種植體各自包埋于由鬆質骨及1mm皮質骨構成的複閤光彈模型中,共建立5箇複閤光彈模型。每一模型先後分彆予以垂直及斜嚮(45°)靜態加載力。利用光彈應力分析法比較5組種植體骨界麵的生物力學特徵。結果垂直加載下,上1/3TM種植體、中1/2TM種植體、下1/3TM種植體比圓柱狀螺紋種植體在皮質骨區及鬆質骨區的跼部應力集中小;斜嚮加載下,4組TM種植體皮質骨區跼部應力集中均低于圓柱狀螺紋種植體。無論在垂直、斜嚮加載下,上1/3TM種植體皮質骨區跼部應力集中均最小。結論閤理錐度設計的TM種植體週圍皮質骨、鬆質骨應力分佈均勻閤理,在不同載荷條件下,上1/3TM種植體骨界麵生物力學錶現最優。
목적:연구불동추도설계적TensionMore(TM)충식체대충식체골계면응력분포적영향。방법의용순태제작5조충식체,분별위원주상라문충식체、상1/3TM충식체(추도장도위3mm)、중1/2TM충식체(추도장도위5mm)、하1/3TM충식체(추도장도위7mm)、전장변화TM충식체(추도장도위10mm)。매조충식체각자포매우유송질골급1mm피질골구성적복합광탄모형중,공건립5개복합광탄모형。매일모형선후분별여이수직급사향(45°)정태가재력。이용광탄응력분석법비교5조충식체골계면적생물역학특정。결과수직가재하,상1/3TM충식체、중1/2TM충식체、하1/3TM충식체비원주상라문충식체재피질골구급송질골구적국부응력집중소;사향가재하,4조TM충식체피질골구국부응력집중균저우원주상라문충식체。무론재수직、사향가재하,상1/3TM충식체피질골구국부응력집중균최소。결론합리추도설계적TM충식체주위피질골、송질골응력분포균균합리,재불동재하조건하,상1/3TM충식체골계면생물역학표현최우。
Objective To photoelastically investigate the difference in load distribution of Tension More (TM) implants with different conical angle designs. Methods The following five groups of implants of different conical angles were designed: cylinder implant, upper 1/3 TM implant (taper length of 3 mm); 1/2 TM implant (taper length of 5 mm); lower 1/3 TM implant (taper length of 7 mm); and bottom TM implant (taper length of 10 mm). The implants were centrally located in individually photoelastic models consisting of a simulated trabecular bone and a 1 mm-thick layer of cortical bone. Vertical and 45° oblique static loads were applied at the center of the superstructures. The resulting stresses were monitored photoelastically and recorded photographically. Results With vertical loading, the cylinder implant showed higher stress levels in the cortical bone and trabecular bone than the upper 1/3 TM implant, 1/2 TM implant, and lower 1/3 TM implant. The four groups of TM implants showed lower stress levels in the cortical bone than the cylinder implant under oblique loads. The least favorable stress concentration in cortical bone was observed in the upper 1/3 TM implant under vertical and oblique loads. Conclusion TM implants of rational conical angle designs seem to be effective in stress distribution. For all designs and load directions, the upper 1/3 TM implant is the most favorable around the crest.