农机化研究
農機化研究
농궤화연구
JOURNAL OF AGRICULTURAL MECHANIZATION RESEARCH
2015年
4期
36-39
,共4页
沈岳%曾文辉%欧明文%匡迎春
瀋嶽%曾文輝%歐明文%劻迎春
침악%증문휘%구명문%광영춘
农田灌溉量%降雨量%预测模型%BP神经网络
農田灌溉量%降雨量%預測模型%BP神經網絡
농전관개량%강우량%예측모형%BP신경망락
the amount of farmland irrigation%rainfall%prediction model%BP neural network
农田灌溉量预测对水资源合理规划和优化配置具有重要意义。为此,以农田水分平衡公式为基础,导出灌溉量I与前各时期的降雨量pt-1、pt-2、pt-3灌溉面积S之间存在非线性关系,由此建立了农田灌溉量的BP神经网络预测模型。检验结果表明,灌溉量BP 神经网络预测法精度约为94.5%。因而,以灌溉面积、前各时期降雨量为输入变量,结合BP神经网络技术来预测农田灌溉量,具有很好的应用前景。
農田灌溉量預測對水資源閤理規劃和優化配置具有重要意義。為此,以農田水分平衡公式為基礎,導齣灌溉量I與前各時期的降雨量pt-1、pt-2、pt-3灌溉麵積S之間存在非線性關繫,由此建立瞭農田灌溉量的BP神經網絡預測模型。檢驗結果錶明,灌溉量BP 神經網絡預測法精度約為94.5%。因而,以灌溉麵積、前各時期降雨量為輸入變量,結閤BP神經網絡技術來預測農田灌溉量,具有很好的應用前景。
농전관개량예측대수자원합리규화화우화배치구유중요의의。위차,이농전수분평형공식위기출,도출관개량I여전각시기적강우량pt-1、pt-2、pt-3관개면적S지간존재비선성관계,유차건립료농전관개량적BP신경망락예측모형。검험결과표명,관개량BP 신경망락예측법정도약위94.5%。인이,이관개면적、전각시기강우량위수입변량,결합BP신경망락기술래예측농전관개량,구유흔호적응용전경。
Prediction of farmland irrigation is of great significance to rational planning and optimal allocation of water re -sources .The article based on the farmland water balance equation ,deduced that nonlinear relationship between irrigation amount I and pt-1 、pt -2 、pt-3 that rainfall irrigation amounts of each period、irrigation area S;which established a BP net-work prediction model irrigation amount nerve .Test results show irrigation amount BP neural network prediction accuracy is about 94 .5%.Thus we can see that in the irrigated area , rainfall before each period as input variables, combined with BP neural network techniques to predict the amount of irrigation, has good prospects.