华南师范大学学报(自然科学版)
華南師範大學學報(自然科學版)
화남사범대학학보(자연과학판)
JOURNAL OF SOUTH CHINA NORMAL UNIVERSITY (NATURAL SCIENCE EDITION)
2014年
5期
16-20
,共5页
线性微分方程%亚纯函数%增长级%超级
線性微分方程%亞純函數%增長級%超級
선성미분방정%아순함수%증장급%초급
linear differential equation%meromorphic function%order of growth%hyper-order
假设Aj(z)=Bj(z)ePj(z)(j=0,1,……,k-1),Aj不全恒等于零,其中Bj(z)是亚纯函数,Pj(z)=aj,mjzmj +……+aj,0为非常数多项式,aj,q (q=0,1,……,mj)为复常数,aj,mj≠0,并且满足σ(Bj)<deg Pj 以及当i≠ j时,deg(Pi -Pj)=max{mi,mj}≤σ(A0)。且满足当mj =σ(A0)且arg aj,mj =arg a0,m0时,|aj,mj|<|a0,m0|。那么齐次线性微分方程f(k)+Ak-1 f(k-1)+……+A0 f=0的任一非零亚纯解f都满足σ(f)=∞。特别地,如果f(z)的极点重数一致有界,那么σ2(f)=σ(A0)。
假設Aj(z)=Bj(z)ePj(z)(j=0,1,……,k-1),Aj不全恆等于零,其中Bj(z)是亞純函數,Pj(z)=aj,mjzmj +……+aj,0為非常數多項式,aj,q (q=0,1,……,mj)為複常數,aj,mj≠0,併且滿足σ(Bj)<deg Pj 以及噹i≠ j時,deg(Pi -Pj)=max{mi,mj}≤σ(A0)。且滿足噹mj =σ(A0)且arg aj,mj =arg a0,m0時,|aj,mj|<|a0,m0|。那麽齊次線性微分方程f(k)+Ak-1 f(k-1)+……+A0 f=0的任一非零亞純解f都滿足σ(f)=∞。特彆地,如果f(z)的極點重數一緻有界,那麽σ2(f)=σ(A0)。
가설Aj(z)=Bj(z)ePj(z)(j=0,1,……,k-1),Aj불전항등우령,기중Bj(z)시아순함수,Pj(z)=aj,mjzmj +……+aj,0위비상수다항식,aj,q (q=0,1,……,mj)위복상수,aj,mj≠0,병차만족σ(Bj)<deg Pj 이급당i≠ j시,deg(Pi -Pj)=max{mi,mj}≤σ(A0)。차만족당mj =σ(A0)차arg aj,mj =arg a0,m0시,|aj,mj|<|a0,m0|。나요제차선성미분방정f(k)+Ak-1 f(k-1)+……+A0 f=0적임일비령아순해f도만족σ(f)=∞。특별지,여과f(z)적겁점중수일치유계,나요σ2(f)=σ(A0)。
Let Aj(z)=Bj(z)ePj(z), j=0,1,……,k-1, Aj are not all identically equal to zero , where Bj(z) are mero-morphic functions, Pj(z)=aj,mjzmj+……+aj,0 are nonconstant polynomials , aj,q(q=0,1,……,mj) are complex constant and such that aj,mj≠0,σ(Bj)<deg Pj and when i≠j, deg(Pi -Pj)=max{mi, mj}≤σ(A0), when mj=σ(A0) and arg aj,mj=arg a0,m0 , |aj,mj|<|a0,m0|.Then any of nonzero meromorphic solutions f of the differential equation f(k) +Ak-1 f(k-1) +……+A0 f=0, satisfies σ(f)=∞.Specially, if the multipicities of poles of f(z) are uniformly bounded , then σ2 ( f)=σ( A0 ) .