平顶山学院学报
平頂山學院學報
평정산학원학보
JOURNAL OF PINGDINGSHAN UNIVERSITY
2014年
5期
31-33
,共3页
线性复杂度%极小多项式%周期序列%流密码
線性複雜度%極小多項式%週期序列%流密碼
선성복잡도%겁소다항식%주기서렬%류밀마
linear complexity%minimal polynomial%periodic sequence%stream cipher
周期序列的线性复杂度是衡量流密码稳定性的重要指标。近年来,对多维周期序列的研究越来越受到广大学者的关注。主要在周期序列S 与其对偶序列-S 组合成的新序列已有结论的基础上,给出了由多个新序列组成的多维序列的极小多项式和联合线性复杂度。
週期序列的線性複雜度是衡量流密碼穩定性的重要指標。近年來,對多維週期序列的研究越來越受到廣大學者的關註。主要在週期序列S 與其對偶序列-S 組閤成的新序列已有結論的基礎上,給齣瞭由多箇新序列組成的多維序列的極小多項式和聯閤線性複雜度。
주기서렬적선성복잡도시형량류밀마은정성적중요지표。근년래,대다유주기서렬적연구월래월수도엄대학자적관주。주요재주기서렬S 여기대우서렬-S 조합성적신서렬이유결론적기출상,급출료유다개신서렬조성적다유서렬적겁소다항식화연합선성복잡도。
The linear complexity of periodic sequence is an important index to measure the stability of the stream cipher. In recent years,the study of multi - sequences is more and more concerned by scholars. In this pa-per,the periodic sequence S and its dual sequence -S are combined into new sequences,on the basis of existing conclusions to give minimal polynomial and joint linear complexity of multi - sequences formed by many new se-quences. These conclusions have certain application values for the study of periodic multi - sequences.