计算机技术与发展
計算機技術與髮展
계산궤기술여발전
COMPUTER TECHNOLOGY AND DEVELOPMENT
2014年
10期
1-5,11
,共6页
肖旭%慕德俊%张慧翔%陈春雷
肖旭%慕德俊%張慧翔%陳春雷
초욱%모덕준%장혜상%진춘뢰
贝叶斯网络%团树传播算法%GPU加速%并行化信念传播
貝葉斯網絡%糰樹傳播算法%GPU加速%併行化信唸傳播
패협사망락%단수전파산법%GPU가속%병행화신념전파
Bayesian network%junction tree propagation algorithm%GPU acceleration%parallel belief propagation
对于复杂输入的贝叶斯网络,精确推理时间较长。文中针对贝叶斯网络精确推理中的团树传播算法,提出了一种基于CPU-GPU异构计算平台的并行化方法。首先研究团节点间信念势更新方式,提出了节点级并行化方法加速更新过程;其次,提出了利用计算复杂度的优先级队列方法,通过拓扑级并行化加速全局推理过程;最后,通过输入不同团树结构-线性结构、两分支二叉树结构和完全二叉树结构验证算法加速效果。实验结果表明,节点级并行化方法对线性结构有明显加速效果,拓扑级并行化对两分支二叉树和满二叉树结构有明显加速效果。
對于複雜輸入的貝葉斯網絡,精確推理時間較長。文中針對貝葉斯網絡精確推理中的糰樹傳播算法,提齣瞭一種基于CPU-GPU異構計算平檯的併行化方法。首先研究糰節點間信唸勢更新方式,提齣瞭節點級併行化方法加速更新過程;其次,提齣瞭利用計算複雜度的優先級隊列方法,通過拓撲級併行化加速全跼推理過程;最後,通過輸入不同糰樹結構-線性結構、兩分支二扠樹結構和完全二扠樹結構驗證算法加速效果。實驗結果錶明,節點級併行化方法對線性結構有明顯加速效果,拓撲級併行化對兩分支二扠樹和滿二扠樹結構有明顯加速效果。
대우복잡수입적패협사망락,정학추리시간교장。문중침대패협사망락정학추리중적단수전파산법,제출료일충기우CPU-GPU이구계산평태적병행화방법。수선연구단절점간신념세경신방식,제출료절점급병행화방법가속경신과정;기차,제출료이용계산복잡도적우선급대렬방법,통과탁복급병행화가속전국추리과정;최후,통과수입불동단수결구-선성결구、량분지이차수결구화완전이차수결구험증산법가속효과。실험결과표명,절점급병행화방법대선성결구유명현가속효과,탁복급병행화대량분지이차수화만이차수결구유명현가속효과。
For Bayesian network with complex input,the inferring is time-consuming. Aiming at the junction tree propagation algorithm of Bayesian network' exact inference,a parallel method is proposed based on the CPU-GPU heterogeneous computing platform. Firstly, the updating method between junction tree nodes is investigated,and node-level parallelism method is proposed to accelerate the upda-ting. Secondly,the priority queue method is presented according to the computational complexity to achieve topological-level parallelism to accelerate the global inference process. Finally,speedup of the proposed method is verified on various input junction trees including lin-ear structure,two branches of binary tree structure and complete binary tree structure. The experimental results indicate that the node-level parallelism method can significantly accelerate the linear structure,and topological-level parallelism is effective for the two branches of binary tree and complete binary tree.